sal/aiprompts/rhaiwrapping.md
2025-04-04 15:05:48 +02:00

26 KiB

Best Practices for Wrapping Rust Functions with Rhai

This document provides comprehensive guidance on how to effectively wrap Rust functions with different standard arguments, pass structs, and handle various return types including errors when using the Rhai scripting language.

Table of Contents

  1. Introduction
  2. Basic Function Registration
  3. Working with Different Argument Types
  4. Passing and Working with Structs
  5. Error Handling
  6. Returning Different Types
  7. Native Function Handling
  8. Advanced Patterns
  9. Complete Examples

Introduction

Rhai is an embedded scripting language for Rust that allows you to expose Rust functions to scripts and vice versa. This document focuses on the best practices for wrapping Rust functions so they can be called from Rhai scripts, with special attention to handling different argument types, structs, and error conditions.

Basic Function Registration

Simple Function Registration

The most basic way to register a Rust function with Rhai is using the register_fn method:

fn add(x: i64, y: i64) -> i64 {
    x + y
}

fn main() -> Result<(), Box<EvalAltResult>> {
    let mut engine = Engine::new();
    
    // Register the function with Rhai
    engine.register_fn("add", add);
    
    // Now the function can be called from Rhai scripts
    let result = engine.eval::<i64>("add(40, 2)")?;
    
    println!("Result: {}", result); // prints 42
    
    Ok(())
}

Function Naming Conventions

When registering functions, follow these naming conventions:

  1. Use snake_case for function names to maintain consistency with Rhai's style
  2. Choose descriptive names that clearly indicate the function's purpose
  3. For functions that operate on specific types, consider prefixing with the type name (e.g., string_length)

Working with Different Argument Types

Primitive Types

Rhai supports the following primitive types that can be directly used as function arguments:

  • i64 (integer)
  • f64 (float)
  • bool (boolean)
  • String or &str (string)
  • char (character)
  • () (unit type)

Example:

fn calculate(num: i64, factor: f64, enabled: bool) -> f64 {
    if enabled {
        num as f64 * factor
    } else {
        0.0
    }
}

engine.register_fn("calculate", calculate);

Arrays and Collections

For array arguments:

fn sum_array(arr: Array) -> i64 {
    arr.iter()
       .filter_map(|v| v.as_int().ok())
       .sum()
}

engine.register_fn("sum_array", sum_array);

Optional Arguments and Function Overloading

Rhai supports function overloading, which allows you to register multiple functions with the same name but different parameter types or counts:

fn greet(name: &str) -> String {
    format!("Hello, {}!", name)
}

fn greet_with_title(title: &str, name: &str) -> String {
    format!("Hello, {} {}!", title, name)
}

engine.register_fn("greet", greet);
engine.register_fn("greet", greet_with_title);

// In Rhai:
// greet("World") -> "Hello, World!"
// greet("Mr.", "Smith") -> "Hello, Mr. Smith!"

Passing and Working with Structs

Registering Custom Types

To use Rust structs in Rhai, you need to register them:

#[derive(Debug, Clone, CustomType)]
#[rhai_type(extra = Self::build_extra)]
struct TestStruct {
    x: i64,
}

impl TestStruct {
    pub fn new() -> Self {
        Self { x: 1 }
    }
    
    pub fn update(&mut self) {
        self.x += 1000;
    }
    
    pub fn calculate(&mut self, data: i64) -> i64 {
        self.x * data
    }
    
    fn build_extra(builder: &mut TypeBuilder<Self>) {
        builder
            .with_name("TestStruct")
            .with_fn("new_ts", Self::new)
            .with_fn("update", Self::update)
            .with_fn("calc", Self::calculate);
    }
}

// In your main function:
let mut engine = Engine::new();
engine.build_type::<TestStruct>();

Method 2: Manual Registration

#[derive(Debug, Clone)]
struct TestStruct {
    x: i64,
}

impl TestStruct {
    pub fn new() -> Self {
        Self { x: 1 }
    }
    
    pub fn update(&mut self) {
        self.x += 1000;
    }
}

let mut engine = Engine::new();

engine
    .register_type_with_name::<TestStruct>("TestStruct")
    .register_fn("new_ts", TestStruct::new)
    .register_fn("update", TestStruct::update);

Accessing Struct Fields

By default, Rhai can access public fields of registered structs:

// In Rhai script:
let x = new_ts();
x.x = 42;  // Direct field access

Passing Structs as Arguments

When passing structs as arguments to functions, ensure they implement the Clone trait:

fn process_struct(test: TestStruct) -> i64 {
    test.x * 2
}

engine.register_fn("process_struct", process_struct);

Returning Structs from Functions

You can return custom structs from functions:

fn create_struct(value: i64) -> TestStruct {
    TestStruct { x: value }
}

engine.register_fn("create_struct", create_struct);

Error Handling

Error handling is a critical aspect of integrating Rust functions with Rhai. Proper error handling ensures that script execution fails gracefully with meaningful error messages.

Basic Error Handling

The most basic way to handle errors is to return a Result type:

fn divide(a: i64, b: i64) -> Result<i64, Box<EvalAltResult>> {
    if b == 0 {
        // Return an error if division by zero
        Err("Division by zero".into())
    } else {
        Ok(a / b)
    }
}

engine.register_fn("divide", divide);

EvalAltResult Types

Rhai provides several error types through the EvalAltResult enum:

use rhai::EvalAltResult;
use rhai::Position;

fn my_function() -> Result<i64, Box<EvalAltResult>> {
    // Different error types
    
    // Runtime error - general purpose error
    return Err(Box::new(EvalAltResult::ErrorRuntime(
        "Something went wrong".into(),
        Position::NONE
    )));
    
    // Type error - when a type mismatch occurs
    return Err(Box::new(EvalAltResult::ErrorMismatchOutputType(
        "expected i64, got string".into(),
        Position::NONE,
        "i64".into()
    )));
    
    // Function not found error
    return Err(Box::new(EvalAltResult::ErrorFunctionNotFound(
        "function_name".into(),
        Position::NONE
    )));
}

Custom Error Types

For more structured error handling, you can create custom error types:

use thiserror::Error;
use rhai::{EvalAltResult, Position};

#[derive(Error, Debug)]
enum MyError {
    #[error("Invalid input: {0}")]
    InvalidInput(String),
    
    #[error("Calculation error: {0}")]
    CalculationError(String),
    
    #[error("Database error: {0}")]
    DatabaseError(String),
}

// Convert your custom error to EvalAltResult
fn process_data(input: i64) -> Result<i64, Box<EvalAltResult>> {
    // Your logic here that might return a custom error
    let result = validate_input(input)
        .map_err(|e| Box::new(EvalAltResult::ErrorRuntime(
            format!("Validation failed: {}", e),
            Position::NONE
        )))?;
    
    let processed = calculate(result)
        .map_err(|e| Box::new(EvalAltResult::ErrorRuntime(
            format!("Calculation failed: {}", e),
            Position::NONE
        )))?;
    
    if processed < 0 {
        return Err(Box::new(EvalAltResult::ErrorRuntime(
            "Negative result not allowed".into(),
            Position::NONE
        )));
    }
    
    Ok(processed)
}

// Helper functions that return our custom error type
fn validate_input(input: i64) -> Result<i64, MyError> {
    if input <= 0 {
        return Err(MyError::InvalidInput("Input must be positive".into()));
    }
    Ok(input)
}

fn calculate(value: i64) -> Result<i64, MyError> {
    if value > 1000 {
        return Err(MyError::CalculationError("Value too large".into()));
    }
    Ok(value * 2)
}

Error Propagation

When calling Rhai functions from Rust, errors are propagated through the ? operator:

let result = engine.eval::<i64>("divide(10, 0)")?; // This will propagate the error

Error Context and Position Information

For better debugging, include position information in your errors:

fn parse_config(config: &str) -> Result<Map, Box<EvalAltResult>> {
    // Get the call position from the context
    let pos = Position::NONE; // In a real function, you'd get this from NativeCallContext
    
    match serde_json::from_str::<serde_json::Value>(config) {
        Ok(json) => {
            // Convert JSON to Rhai Map
            let mut map = Map::new();
            // ... conversion logic ...
            Ok(map)
        },
        Err(e) => {
            Err(Box::new(EvalAltResult::ErrorRuntime(
                format!("Failed to parse config: {}", e),
                pos
            )))
        }
    }
}

Best Practices for Error Handling

  1. Be Specific: Provide clear, specific error messages that help script writers understand what went wrong
  2. Include Context: When possible, include relevant context in error messages (e.g., variable values, expected types)
  3. Consistent Error Types: Use consistent error types for similar issues
  4. Validate Early: Validate inputs at the beginning of functions to fail fast
  5. Document Error Conditions: Document possible error conditions for functions exposed to Rhai

Returning Different Types

Properly handling return types is crucial for creating a seamless integration between Rust and Rhai. This section covers various approaches to returning different types of data from Rust functions to Rhai scripts.

Simple Return Types

For simple return types, specify the type when registering the function:

fn get_number() -> i64 { 42 }
fn get_string() -> String { "hello".to_string() }
fn get_boolean() -> bool { true }
fn get_float() -> f64 { 3.14159 }
fn get_char() -> char { 'A' }
fn get_unit() -> () { () }

engine.register_fn("get_number", get_number);
engine.register_fn("get_string", get_string);
engine.register_fn("get_boolean", get_boolean);
engine.register_fn("get_float", get_float);
engine.register_fn("get_char", get_char);
engine.register_fn("get_unit", get_unit);

Dynamic Return Types

WE SHOULD TRY NOT TO DO THIS

For functions that may return different types based on conditions, use the Dynamic type:

fn get_value(which: i64) -> Dynamic {
    match which {
        0 => Dynamic::from(42),
        1 => Dynamic::from("hello"),
        2 => Dynamic::from(true),
        3 => Dynamic::from(3.14159),
        4 => {
            let mut array = Array::new();
            array.push(Dynamic::from(1));
            array.push(Dynamic::from(2));
            Dynamic::from_array(array)
        },
        5 => {
            let mut map = Map::new();
            map.insert("key".into(), "value".into());
            Dynamic::from_map(map)
        },
        _ => Dynamic::UNIT,
    }
}

engine.register_fn("get_value", get_value);

Returning Collections

Rhai supports various collection types:

// Returning an array
fn get_array() -> Array {
    let mut array = Array::new();
    array.push(Dynamic::from(1));
    array.push(Dynamic::from("hello"));
    array.push(Dynamic::from(true));
    array
}

// Returning a map
fn get_map() -> Map {
    let mut map = Map::new();
    map.insert("number".into(), 42.into());
    map.insert("string".into(), "hello".into());
    map.insert("boolean".into(), true.into());
    map
}

// Returning a typed Vec (will be converted to Rhai Array)
fn get_numbers() -> Vec<i64> {
    vec![1, 2, 3, 4, 5]
}

// Returning a HashMap (will be converted to Rhai Map)
fn get_config() -> HashMap<String, String> {
    let mut map = HashMap::new();
    map.insert("host".to_string(), "localhost".to_string());
    map.insert("port".to_string(), "8080".to_string());
    map
}

engine.register_fn("get_array", get_array);
engine.register_fn("get_map", get_map);
engine.register_fn("get_numbers", get_numbers);
engine.register_fn("get_config", get_config);

Returning Custom Structs

For returning custom structs, ensure they implement the Clone trait:

#[derive(Debug, Clone)]
struct TestStruct {
    x: i64,
    name: String,
    active: bool,
}

fn create_struct(value: i64, name: &str, active: bool) -> TestStruct {
    TestStruct {
        x: value,
        name: name.to_string(),
        active
    }
}

fn get_struct_array() -> Vec<TestStruct> {
    vec![
        TestStruct { x: 1, name: "one".to_string(), active: true },
        TestStruct { x: 2, name: "two".to_string(), active: false },
    ]
}

engine.register_type_with_name::<TestStruct>("TestStruct")
      .register_fn("create_struct", create_struct)
      .register_fn("get_struct_array", get_struct_array);

Returning Results and Options

For functions that might fail or return optional values:

// Returning a Result
fn divide(a: i64, b: i64) -> Result<i64, Box<EvalAltResult>> {
    if b == 0 {
        Err("Division by zero".into())
    } else {
        Ok(a / b)
    }
}

// Returning an Option (converted to Dynamic)
fn find_item(id: i64) -> Dynamic {
    let item = lookup_item(id);
    
    match item {
        Some(value) => value.into(),
        None => Dynamic::UNIT,  // Rhai has no null, so use () for None
    }
}

// Helper function returning Option
fn lookup_item(id: i64) -> Option<TestStruct> {
    match id {
        1 => Some(TestStruct { x: 1, name: "one".to_string(), active: true }),
        2 => Some(TestStruct { x: 2, name: "two".to_string(), active: false }),
        _ => None,
    }
}

engine.register_fn("divide", divide);
engine.register_fn("find_item", find_item);

Serialization and Deserialization

When working with JSON or other serialized formats:

use serde_json::{Value as JsonValue, json};

// Return JSON data as a Rhai Map
fn get_json_data() -> Result<Map, Box<EvalAltResult>> {
    // Simulate fetching JSON data
    let json_data = json!({
        "name": "John Doe",
        "age": 30,
        "address": {
            "street": "123 Main St",
            "city": "Anytown"
        },
        "phones": ["+1-555-1234", "+1-555-5678"]
    });
    
    // Convert JSON to Rhai Map
    json_to_rhai_value(json_data)
        .and_then(|v| v.try_cast::<Map>().map_err(|_| "Expected a map".into()))
}

// Helper function to convert JSON Value to Rhai Dynamic
fn json_to_rhai_value(json: JsonValue) -> Result<Dynamic, Box<EvalAltResult>> {
    match json {
        JsonValue::Null => Ok(Dynamic::UNIT),
        JsonValue::Bool(b) => Ok(b.into()),
        JsonValue::Number(n) => {
            if n.is_i64() {
                Ok(n.as_i64().unwrap().into())
            } else {
                Ok(n.as_f64().unwrap().into())
            }
        },
        JsonValue::String(s) => Ok(s.into()),
        JsonValue::Array(arr) => {
            let mut rhai_array = Array::new();
            for item in arr {
                rhai_array.push(json_to_rhai_value(item)?);
            }
            Ok(Dynamic::from_array(rhai_array))
        },
        JsonValue::Object(obj) => {
            let mut rhai_map = Map::new();
            for (k, v) in obj {
                rhai_map.insert(k.into(), json_to_rhai_value(v)?);
            }
            Ok(Dynamic::from_map(rhai_map))
        }
    }
}

engine.register_fn("get_json_data", get_json_data);

Working with Dynamic Type System

Understanding how to work with Rhai's Dynamic type system is essential:

// Function that examines a Dynamic value and returns information about it
fn inspect_value(value: Dynamic) -> Map {
    let mut info = Map::new();
    
    // Store the type name
    info.insert("type".into(), value.type_name().into());
    
    // Store specific type information
    if value.is_int() {
        info.insert("category".into(), "number".into());
        info.insert("value".into(), value.clone());
    } else if value.is_float() {
        info.insert("category".into(), "number".into());
        info.insert("value".into(), value.clone());
    } else if value.is_string() {
        info.insert("category".into(), "string".into());
        info.insert("length".into(), value.clone_cast::<String>().len().into());
        info.insert("value".into(), value.clone());
    } else if value.is_array() {
        info.insert("category".into(), "array".into());
        info.insert("length".into(), value.clone_cast::<Array>().len().into());
    } else if value.is_map() {
        info.insert("category".into(), "map".into());
        info.insert("keys".into(), value.clone_cast::<Map>().keys().len().into());
    } else if value.is_bool() {
        info.insert("category".into(), "boolean".into());
        info.insert("value".into(), value.clone());
    } else {
        info.insert("category".into(), "other".into());
    }
    
    info
}

engine.register_fn("inspect", inspect_value);

Native Function Handling

When working with native Rust functions in Rhai, there are several important considerations for handling different argument types, especially when dealing with complex data structures and error cases.

Native Function Signature

Native Rust functions registered with Rhai can have one of two signatures:

  1. Standard Function Signature: Functions with typed parameters

    fn my_function(param1: Type1, param2: Type2, ...) -> ReturnType { ... }
    
  2. Dynamic Function Signature: Functions that handle raw Dynamic values

    fn my_dynamic_function(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> { ... }
    

Working with Raw Dynamic Arguments

The dynamic function signature gives you more control but requires manual type checking and conversion:

fn process_dynamic_args(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
    // Check number of arguments
    if args.len() != 2 {
        return Err("Expected exactly 2 arguments".into());
    }
    
    // Extract and convert the first argument to an integer
    let arg1 = args[0].as_int().map_err(|_| "First argument must be an integer".into())?;
    
    // Extract and convert the second argument to a string
    let arg2 = args[1].as_str().map_err(|_| "Second argument must be a string".into())?;
    
    // Process the arguments
    let result = format!("{}: {}", arg2, arg1);
    
    // Return the result as a Dynamic value
    Ok(result.into())
}

// Register the function
engine.register_fn("process", process_dynamic_args);

Handling Complex Struct Arguments

When working with complex struct arguments, you have several options:

#[derive(Clone)]
struct ComplexData {
    id: i64,
    values: Vec<f64>,
}

fn process_complex(data: &mut ComplexData, factor: f64) -> f64 {
    let sum: f64 = data.values.iter().sum();
    data.values.push(sum * factor);
    sum * factor
}

engine.register_fn("process_complex", process_complex);

Option 2: Use Dynamic parameters for more flexibility

fn process_complex_dynamic(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
    // Check arguments
    if args.len() != 2 {
        return Err("Expected exactly 2 arguments".into());
    }
    
    // Get mutable reference to the complex data
    let data = args[0].write_lock::<ComplexData>()
        .ok_or_else(|| "First argument must be ComplexData".into())?;
    
    // Get the factor
    let factor = args[1].as_float().map_err(|_| "Second argument must be a number".into())?;
    
    // Process the data
    let sum: f64 = data.values.iter().sum();
    data.values.push(sum * factor);
    
    Ok((sum * factor).into())
}

Handling Variable Arguments

For functions that accept a variable number of arguments:

fn sum_all(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result<Dynamic, Box<EvalAltResult>> {
    let mut total: i64 = 0;
    
    for arg in args.iter() {
        total += arg.as_int().map_err(|_| "All arguments must be integers".into())?;
    }
    
    Ok(total.into())
}

engine.register_fn("sum_all", sum_all);

// In Rhai:
// sum_all(1, 2, 3, 4, 5) -> 15
// sum_all(10, 20) -> 30

Handling Optional Arguments

For functions with optional arguments, use function overloading:

fn create_person(name: &str) -> Person {
    Person { name: name.to_string(), age: 30 } // Default age
}

fn create_person_with_age(name: &str, age: i64) -> Person {
    Person { name: name.to_string(), age }
}

engine.register_fn("create_person", create_person);
engine.register_fn("create_person", create_person_with_age);

// In Rhai:
// create_person("John") -> Person with name "John" and age 30
// create_person("John", 25) -> Person with name "John" and age 25

Handling Default Arguments

Rhai doesn't directly support default arguments, but you can simulate them:

fn configure(options: &mut Map) -> Result<(), Box<EvalAltResult>> {
    // Check if certain options exist, if not, set defaults
    if !options.contains_key("timeout") {
        options.insert("timeout".into(), 30_i64.into());
    }
    
    if !options.contains_key("retry") {
        options.insert("retry".into(), true.into());
    }
    
    Ok(())
}

engine.register_fn("configure", configure);

// In Rhai:
// let options = #{};
// configure(options);
// print(options.timeout); // Prints 30

Handling Mutable and Immutable References

Rhai supports both mutable and immutable references:

// Function taking an immutable reference
fn get_name(person: &Person) -> String {
    person.name.clone()
}

// Function taking a mutable reference
fn increment_age(person: &mut Person) {
    person.age += 1;
}

engine.register_fn("get_name", get_name);
engine.register_fn("increment_age", increment_age);

Converting Between Rust and Rhai Types

When you need to convert between Rust and Rhai types:

// Convert a Rust HashMap to a Rhai Map
fn create_config() -> Map {
    let mut rust_map = HashMap::new();
    rust_map.insert("server".to_string(), "localhost".to_string());
    rust_map.insert("port".to_string(), "8080".to_string());
    
    // Convert to Rhai Map
    let mut rhai_map = Map::new();
    for (k, v) in rust_map {
        rhai_map.insert(k.into(), v.into());
    }
    
    rhai_map
}

// Convert a Rhai Array to a Rust Vec
fn process_array(arr: Array) -> Result<i64, Box<EvalAltResult>> {
    // Convert to Rust Vec<i64>
    let rust_vec: Result<Vec<i64>, _> = arr.iter()
        .map(|v| v.as_int().map_err(|_| "Array must contain only integers".into()))
        .collect();
    
    let numbers = rust_vec?;
    Ok(numbers.iter().sum())
}

Complete Examples

Example 1: Basic Function Registration and Struct Handling

use rhai::{Engine, EvalAltResult, RegisterFn};

#[derive(Debug, Clone)]
struct Person {
    name: String,
    age: i64,
}

impl Person {
    fn new(name: &str, age: i64) -> Self {
        Self {
            name: name.to_string(),
            age,
        }
    }
    
    fn greet(&self) -> String {
        format!("Hello, my name is {} and I am {} years old.", self.name, self.age)
    }
    
    fn have_birthday(&mut self) {
        self.age += 1;
    }
}

fn is_adult(person: &Person) -> bool {
    person.age >= 18
}

fn main() -> Result<(), Box<EvalAltResult>> {
    let mut engine = Engine::new();
    
    // Register the Person type
    engine
        .register_type_with_name::<Person>("Person")
        .register_fn("new_person", Person::new)
        .register_fn("greet", Person::greet)
        .register_fn("have_birthday", Person::have_birthday)
        .register_fn("is_adult", is_adult);
    
    // Run a script that uses the Person type
    let result = engine.eval::<String>(r#"
        let p = new_person("John", 17);
        let greeting = p.greet();
        
        if !is_adult(p) {
            p.have_birthday();
        }
        
        greeting + " Now I am " + p.age.to_string() + " years old."
    "#)?;
    
    println!("{}", result);
    
    Ok(())
}

Example 2: Error Handling and Complex Return Types

use rhai::{Engine, EvalAltResult, Map, Dynamic};
use std::collections::HashMap;

#[derive(Debug, Clone)]
struct Product {
    id: i64,
    name: String,
    price: f64,
}

fn get_product(id: i64) -> Result<Product, Box<EvalAltResult>> {
    match id {
        1 => Ok(Product { id: 1, name: "Laptop".to_string(), price: 999.99 }),
        2 => Ok(Product { id: 2, name: "Phone".to_string(), price: 499.99 }),
        _ => Err("Product not found".into())
    }
}

fn calculate_total(products: Array) -> Result<f64, Box<EvalAltResult>> {
    let mut total = 0.0;
    
    for product_dynamic in products.iter() {
        let product = product_dynamic.clone().try_cast::<Product>()
            .map_err(|_| "Invalid product in array".into())?;
        
        total += product.price;
    }
    
    Ok(total)
}

fn get_product_map() -> Map {
    let mut map = Map::new();
    
    map.insert("laptop".into(), 
        Dynamic::from(Product { id: 1, name: "Laptop".to_string(), price: 999.99 }));
    map.insert("phone".into(), 
        Dynamic::from(Product { id: 2, name: "Phone".to_string(), price: 499.99 }));
    
    map
}

fn main() -> Result<(), Box<EvalAltResult>> {
    let mut engine = Engine::new();
    
    engine
        .register_type_with_name::<Product>("Product")
        .register_fn("get_product", get_product)
        .register_fn("calculate_total", calculate_total)
        .register_fn("get_product_map", get_product_map);
    
    let result = engine.eval::<f64>(r#"
        let products = [];
        
        // Try to get products
        try {
            products.push(get_product(1));
            products.push(get_product(2));
            products.push(get_product(3)); // This will throw an error
        } catch(err) {
            print(`Error: ${err}`);
        }
        
        // Get products from map
        let product_map = get_product_map();
        products.push(product_map.laptop);
        
        calculate_total(products)
    "#)?;
    
    println!("Total: ${:.2}", result);
    
    Ok(())
}