sal-modular/docs/vault_impl_plan.md

235 lines
9.4 KiB
Markdown

# Vault Implementation Plan (Technical Appendix)
This document is a technical reference for contributors and maintainers of the Vault crate. It covers advanced implementation details, design rationale, and data models. For a high-level overview and usage, see [`vault.md`](vault.md) and [`architecture.md`](architecture.md).
---
## Table of Contents
- [Design Principle: Stateless & Session APIs](#design-principle-stateless--session-apis)
- [Data Model](#data-model)
- [Module & File Structure](#module--file-structure)
- [Advanced Notes](#advanced-notes)
---
> **Design Principle:**
> **The vault crate will provide both a stateless (context-passing) API and an ergonomic session-based API.**
> This ensures maximum flexibility for both library developers and application builders, supporting both functional and stateful usage patterns.
## Design Principle: Stateless & Session APIs
The `vault` crate is a modular, async, and WASM-compatible cryptographic keystore. It manages an encrypted keyspace (multiple keypairs), provides cryptographic APIs, and persists all data via the `kvstore` trait. The design ensures all sensitive material is encrypted at rest and is portable across native and browser environments.
**Core Components:**
- **Vault:** Main manager for encrypted keyspace and cryptographic operations.
- **KeyPair:** Represents individual asymmetric keypairs (e.g., secp256k1, Ed25519).
- **Symmetric Encryption Module:** Handles encryption/decryption and key derivation.
- **SessionManager (Optional):** Maintains current context (e.g., selected keypair) for user sessions.
- **KVStore:** Async trait for backend-agnostic persistence (sled on native, IndexedDB on WASM).
You can design the vault crate to support both stateless and session-based (stateful) usage patterns. This gives maximum flexibility to both library developers and application builders.
### Stateless API
- All operations require explicit context (unlocked keyspace, keypair, etc.) as arguments.
- No hidden or global state; maximally testable and concurrency-friendly.
- Example:
```rust
let keyspace = vault.unlock_keyspace("personal", b"password").await?;
let signature = keyspace.sign("key1", &msg).await?;
```
### Session Manager API
- Maintains in-memory state of unlocked keyspaces and current selections.
- Provides ergonomic methods for interactive apps (CLI, desktop, browser).
- Example:
```rust
let mut session = SessionManager::new();
session.unlock_keyspace("personal", b"password", &vault)?;
session.select_keypair("key1");
let signature = session.current_keypair().unwrap().sign(&msg)?;
session.logout(); // wipes all secrets from memory
```
### How They Work Together
- The **stateless API** is the core, always available and used internally by the session manager.
- The **session manager** is a thin, optional layer that wraps the stateless API for convenience.
- Applications can choose which pattern fits their needs, or even mix both (e.g., use stateless for background jobs, session manager for user sessions).
### Benefits
- **Flexibility:** Library users can pick the best model for their use case.
- **Security:** Session manager can enforce auto-lock, timeouts, and secure memory wiping.
- **Simplicity:** Stateless API is easy to test and reason about, while session manager improves UX for interactive flows.
### Commitment: Provide Both APIs
- **Both stateless and session-based APIs will be provided in the vault crate.**
- Stateless API: For backend, automation, or library contexts—explicit, functional, and concurrency-friendly.
- Session manager API: For UI/UX-focused applications—ergonomic, stateful, and user-friendly.
---
## Data Model
### VaultMetadata & Keyspace Model
```rust
struct VaultMetadata {
name: String,
keyspaces: Vec<KeyspaceMetadata>,
// ... other vault-level metadata (optionally encrypted)
}
struct KeyspaceMetadata {
name: String,
salt: [u8; 16], // Unique salt for this keyspace
encrypted_blob: Vec<u8>, // All keypairs & secrets, encrypted with keyspace password
// ... other keyspace metadata
}
// The decrypted contents of a keyspace:
struct KeyspaceData {
keypairs: Vec<KeyEntry>,
// ... other keyspace-level metadata
}
struct KeyEntry {
id: String,
key_type: KeyType,
private_key: Vec<u8>, // Only present in memory after decryption
public_key: Vec<u8>,
metadata: Option<KeyMetadata>,
}
enum KeyType {
Secp256k1,
Ed25519,
// ...
}
```
- The vault contains a list of keyspaces, each with its own salt and encrypted blob.
- Each keyspace is unlocked independently using its password and salt.
- Key material is never stored unencrypted; only decrypted in memory after unlocking a keyspace.
---
## 3. API Design (Keyspace Model)
### Vault
```rust
impl<S: KVStore + Send + Sync> Vault<S> {
async fn open(store: S) -> Result<Self, VaultError>;
async fn list_keyspaces(&self) -> Result<Vec<KeyspaceInfo>, VaultError>;
async fn create_keyspace(&mut self, name: &str, password: &[u8]) -> Result<(), VaultError>;
async fn delete_keyspace(&mut self, name: &str) -> Result<(), VaultError>;
async fn unlock_keyspace(&mut self, name: &str, password: &[u8]) -> Result<(), VaultError>;
async fn lock_keyspace(&mut self, name: &str);
// ...
}
```
### Keyspace Management
```rust
impl Keyspace {
fn is_unlocked(&self) -> bool;
fn name(&self) -> &str;
async fn create_key(&mut self, key_type: KeyType, name: &str) -> Result<String, VaultError>;
async fn list_keys(&self) -> Result<Vec<KeyInfo>, VaultError>;
async fn sign(&self, key_id: &str, msg: &[u8]) -> Result<Signature, VaultError>;
async fn encrypt(&self, key_id: &str, plaintext: &[u8]) -> Result<Ciphertext, VaultError>;
async fn decrypt(&self, key_id: &str, ciphertext: &[u8]) -> Result<Vec<u8>, VaultError>;
async fn change_password(&mut self, old: &[u8], new: &[u8]) -> Result<(), VaultError>;
// ...
}
```
### SessionManager
```rust
impl SessionManager {
fn select_key(&mut self, key_id: &str);
fn current_key(&self) -> Option<&KeyPair>;
}
```
```
vault/
├── src/
│ ├── lib.rs # Vault API and main logic
│ ├── data.rs # Data models: VaultData, KeyEntry, etc.
│ ├── crypto.rs # Symmetric/asymmetric crypto, key derivation
│ ├── session.rs # SessionManager
│ ├── error.rs # VaultError and error handling
│ └── utils.rs # Helpers, serialization, etc.
├── tests/
│ ├── native.rs # Native (sled) tests
│ └── wasm.rs # WASM (IndexedDB) tests
└── ...
```
---
## Advanced Notes
- For further context on cryptographic choices, async patterns, and WASM compatibility, see `architecture.md`.
- This appendix is intended for developers extending or maintaining the Vault implementation.
### Cryptography: Crates and Algorithms
**Crates:**
- [`aes-gcm`](https://crates.io/crates/aes-gcm): AES-GCM authenticated encryption (WASM-compatible)
- [`chacha20poly1305`](https://crates.io/crates/chacha20poly1305): ChaCha20Poly1305 authenticated encryption (WASM-compatible)
- [`pbkdf2`](https://crates.io/crates/pbkdf2): Password-based key derivation (WASM-compatible)
- [`scrypt`](https://crates.io/crates/scrypt): Alternative KDF, strong and WASM-compatible
- [`k256`](https://crates.io/crates/k256): secp256k1 ECDSA (Ethereum keys)
- [`ed25519-dalek`](https://crates.io/crates/ed25519-dalek): Ed25519 keypairs
- [`rand_core`](https://crates.io/crates/rand_core): Randomness, WASM-compatible
- [`getrandom`](https://crates.io/crates/getrandom): Platform-agnostic RNG
**Algorithm Choices:**
- **Vault Encryption:**
- AES-256-GCM (default, via `aes-gcm`)
- Optionally ChaCha20Poly1305 (via `chacha20poly1305`)
- **Password Key Derivation:**
- PBKDF2-HMAC-SHA256 (via `pbkdf2`)
- Optionally scrypt (via `scrypt`)
- **Asymmetric Keypairs:**
- secp256k1 (via `k256`) for Ethereum/EVM
- Ed25519 (via `ed25519-dalek`) for general-purpose signatures
- **Randomness:**
- Use `rand_core` and `getrandom` for secure RNG in both native and WASM
**Feature-to-Algorithm Mapping:**
| Feature | Crate(s) | Algorithm(s) |
|------------------------|-----------------------|---------------------------|
| Vault encryption | aes-gcm, chacha20poly1305 | AES-256-GCM, ChaCha20Poly1305 |
| Password KDF | pbkdf2, scrypt | PBKDF2-HMAC-SHA256, scrypt|
| Symmetric encryption | aes-gcm, chacha20poly1305 | AES-256-GCM, ChaCha20Poly1305 |
| secp256k1 keypairs | k256 | secp256k1 ECDSA |
| Ed25519 keypairs | ed25519-dalek | Ed25519 |
| Randomness | rand_core, getrandom | OS RNG |
---
## 7. WASM & Native Considerations
- Use only WASM-compatible crypto crates (`aes-gcm`, `chacha20poly1305`, `k256`, `ed25519-dalek`, etc).
- Use `wasm-bindgen`/`wasm-bindgen-futures` for browser interop.
- Use `tokio::task::spawn_blocking` for blocking crypto on native.
- All APIs are async and runtime-agnostic.
---
## 6. Future Extensions
- Multi-user vaults (multi-password, access control)
- Hardware-backed key storage (YubiKey, WebAuthn)
- Key rotation and auditing
- Pluggable crypto algorithms
- Advanced metadata and tagging
---
## 7. References
- See `docs/Architecture.md` and `docs/kvstore-vault-architecture.md` for high-level design and rationale.
- Crypto patterns inspired by industry best practices (e.g., Wire, Signal, Bitwarden).