Compare commits

..

13 Commits

Author SHA1 Message Date
timurgordon
c0e11c6510 merge and fix tests
Some checks failed
Rhai Tests / Run Rhai Tests (push) Has been cancelled
2025-05-23 21:46:11 +03:00
timurgordon
fedf957079 Merge branch 'development_lee' 2025-05-23 21:14:31 +03:00
Lee Smet
e5a4a1b634
Add tests for symmetric keys
Some checks failed
Rhai Tests / Run Rhai Tests (pull_request) Has been cancelled
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-16 15:19:45 +02:00
Lee Smet
7f55cf4fba
Add tests for asymmetric keys, add public key export
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-16 15:05:45 +02:00
Lee Smet
365814b424
Fix signature key import/export, add tests
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-16 14:37:10 +02:00
Lee Smet
d29a8fbb67
Rename Store to Vault and move to lib root
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-16 11:24:27 +02:00
Lee Smet
2014c63b78
Remove old files
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-15 13:53:54 +02:00
Lee Smet
2adda10664
Basic API
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-15 13:53:16 +02:00
Lee Smet
7b1908b676
Use kvstore as backing
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-14 19:21:02 +02:00
Lee Smet
e9b867a36e
Individiual methods for keystores
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-14 11:49:36 +02:00
Lee Smet
78c0fd7871
Define the global KeySpace interface
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-14 11:10:52 +02:00
Lee Smet
e44ee83e74
Implement proper key types
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-13 17:37:33 +02:00
Lee Smet
dfe6c91273
Fix build issues
Signed-off-by: Lee Smet <lee.smet@hotmail.com>
2025-05-13 11:45:06 +02:00
21 changed files with 1291 additions and 98 deletions

View File

@ -10,18 +10,25 @@ keywords = ["system", "os", "abstraction", "platform", "filesystem"]
categories = ["os", "filesystem", "api-bindings"]
readme = "README.md"
[workspace]
members = [".", "vault"]
[dependencies]
hex = "0.4"
anyhow = "1.0.98"
base64 = "0.22.1" # Base64 encoding/decoding
base64 = "0.22.1" # Base64 encoding/decoding
cfg-if = "1.0"
chacha20poly1305 = "0.10.1" # ChaCha20Poly1305 AEAD cipher
clap = "2.34.0" # Command-line argument parsing
dirs = "6.0.0" # Directory paths
dirs = "6.0.0" # Directory paths
env_logger = "0.11.8" # Logger implementation
ethers = { version = "2.0.7", features = ["legacy"] } # Ethereum library
glob = "0.3.1" # For file pattern matching
jsonrpsee = "0.25.1"
k256 = { version = "0.13.4", features = ["ecdsa", "ecdh"] } # Elliptic curve cryptography
k256 = { version = "0.13.4", features = [
"ecdsa",
"ecdh",
] } # Elliptic curve cryptography
lazy_static = "1.4.0" # For lazy initialization of static variables
libc = "0.2"
log = "0.4" # Logging facade
@ -38,7 +45,7 @@ serde = { version = "1.0", features = [
"derive",
] } # For serialization/deserialization
serde_json = "1.0" # For JSON handling
sha2 = "0.10.7" # SHA-2 hash functions
sha2 = "0.10.7" # SHA-2 hash functions
tempfile = "3.5" # For temporary file operations
tera = "1.19.0" # Template engine for text rendering
thiserror = "2.0.12" # For error handling
@ -63,8 +70,11 @@ windows = { version = "0.61.1", features = [
[dev-dependencies]
mockall = "0.13.1" # For mocking in tests
tempfile = "3.5" # For tests that need temporary files/directories
tokio = { version = "1.28", features = ["full", "test-util"] } # For async testing
tempfile = "3.5" # For tests that need temporary files/directories
tokio = { version = "1.28", features = [
"full",
"test-util",
] } # For async testing
[[bin]]
name = "herodo"

View File

@ -25,7 +25,7 @@ if create_key_space(space_name1, password) {
print("Testing creating keypairs in current space...");
let keypair1_name = "session_keypair1";
if create_keypair(keypair1_name, password) {
if create_keypair(keypair1_name) {
print(`✓ Keypair "${keypair1_name}" created successfully in space "${space_name1}"`);
} else {
print(`✗ Failed to create keypair "${keypair1_name}" in space "${space_name1}"`);
@ -60,7 +60,7 @@ if create_key_space(space_name1, password) {
// Create a keypair in the second space
let keypair2_name = "session_keypair2";
if create_keypair(keypair2_name, password) {
if create_keypair(keypair2_name) {
print(`✓ Keypair "${keypair2_name}" created successfully in space "${space_name2}"`);
} else {
print(`✗ Failed to create keypair "${keypair2_name}" in space "${space_name2}"`);
@ -109,7 +109,7 @@ if create_key_space(space_name1, password) {
// Attempt to create a keypair
let create_success = false;
try {
create_success = create_keypair("no_space_keypair", password);
create_success = create_keypair("test_keypair_2");
} catch(err) {
print(`✓ Caught expected error for creating keypair without active space: ${err}`);
}

View File

@ -22,7 +22,7 @@ if create_key_space(space_name, password) {
print(`✓ Key space "${space_name}" created successfully`);
// Create sender keypair
if create_keypair(sender_name, password) {
if create_keypair(sender_name) {
print(`✓ Sender keypair "${sender_name}" created successfully`);
} else {
print(`✗ Failed to create sender keypair "${sender_name}"`);
@ -30,7 +30,7 @@ if create_key_space(space_name, password) {
}
// Create recipient keypair
if create_keypair(recipient_name, password) {
if create_keypair(recipient_name) {
print(`✓ Recipient keypair "${recipient_name}" created successfully`);
} else {
print(`✗ Failed to create recipient keypair "${recipient_name}"`);

View File

@ -28,7 +28,7 @@ try {
if create_key_space("test_space", "password") {
print("✓ Key space created successfully");
if create_keypair(keypair_name, "password") {
if create_keypair(keypair_name) {
print("✓ Keypair created successfully");
// Test getting the public key
@ -82,11 +82,11 @@ try {
let keypair1_name = "keypair1";
let keypair2_name = "keypair2";
if create_keypair(keypair1_name, password) {
if create_keypair(keypair1_name) {
print(`✓ Keypair "${keypair1_name}" created successfully`);
}
if create_keypair(keypair2_name, password) {
if create_keypair(keypair2_name) {
print(`✓ Keypair "${keypair2_name}" created successfully`);
}
@ -128,7 +128,7 @@ try {
print("Testing creating keypairs in current space...");
let keypair1_name = "session_keypair1";
if create_keypair(keypair1_name, password) {
if create_keypair(keypair1_name) {
print(`✓ Keypair "${keypair1_name}" created successfully in space "${space_name1}"`);
}
@ -165,12 +165,12 @@ try {
print(`✓ Key space "${space_name}" created successfully`);
// Create sender keypair
if create_keypair(sender_name, password) {
if create_keypair(sender_name) {
print(`✓ Sender keypair "${sender_name}" created successfully`);
}
// Create recipient keypair
if create_keypair(recipient_name, password) {
if create_keypair(recipient_name) {
print(`✓ Recipient keypair "${recipient_name}" created successfully`);
}

View File

@ -7,7 +7,7 @@
BASE_DIR="."
# Path to herodo executable (assuming debug build)
HERODO_CMD="../target/debug/herodo"
HERODO_CMD="$HOME/hero/bin/herodo"
# Define colors for output
GREEN='\033[0;32m'

View File

@ -1,6 +1,7 @@
//! Rhai bindings for SAL crypto functionality
use base64::{engine::general_purpose::STANDARD as BASE64, Engine as _};
use crate::vault::CryptoError;
use ethers::types::{Address, U256};
use once_cell::sync::Lazy;
use rhai::{Dynamic, Engine, EvalAltResult};
@ -9,10 +10,10 @@ use std::fs;
use std::path::PathBuf;
use std::str::FromStr;
use std::sync::Mutex;
use hex;
use tokio::runtime::Runtime;
use crate::vault::ethereum;
use crate::vault::keyspace::session_manager as keypair;
use crate::vault::{ethereum, keyspace};
use crate::vault::symmetric::implementation as symmetric_impl;
// Global Tokio runtime for blocking async operations
@ -73,7 +74,7 @@ fn load_key_space(name: &str, password: &str) -> bool {
};
// Set as current space
match keypair::set_current_space(space) {
match keyspace::set_current_space(space) {
Ok(_) => true,
Err(e) => {
log::error!("Error setting current space: {}", e);
@ -83,10 +84,10 @@ fn load_key_space(name: &str, password: &str) -> bool {
}
fn create_key_space(name: &str, password: &str) -> bool {
match keypair::create_space(name) {
match keyspace::session_manager::create_space(name) {
Ok(_) => {
// Get the current space
match keypair::get_current_space() {
match keyspace::get_current_space() {
Ok(space) => {
// Encrypt the key space
let encrypted_space = match symmetric_impl::encrypt_key_space(&space, password)
@ -151,7 +152,7 @@ fn create_key_space(name: &str, password: &str) -> bool {
// Auto-save function for internal use
fn auto_save_key_space(password: &str) -> bool {
match keypair::get_current_space() {
match keyspace::get_current_space() {
Ok(space) => {
// Encrypt the key space
let encrypted_space = match symmetric_impl::encrypt_key_space(&space, password) {
@ -207,7 +208,7 @@ fn auto_save_key_space(password: &str) -> bool {
}
fn encrypt_key_space(password: &str) -> String {
match keypair::get_current_space() {
match keyspace::get_current_space() {
Ok(space) => match symmetric_impl::encrypt_key_space(&space, password) {
Ok(encrypted_space) => match serde_json::to_string(&encrypted_space) {
Ok(json) => json,
@ -232,7 +233,7 @@ fn decrypt_key_space(encrypted: &str, password: &str) -> bool {
match serde_json::from_str(encrypted) {
Ok(encrypted_space) => {
match symmetric_impl::decrypt_key_space(&encrypted_space, password) {
Ok(space) => match keypair::set_current_space(space) {
Ok(space) => match keyspace::set_current_space(space) {
Ok(_) => true,
Err(e) => {
log::error!("Error setting current space: {}", e);
@ -252,32 +253,70 @@ fn decrypt_key_space(encrypted: &str, password: &str) -> bool {
}
}
// Keypair management functions
fn create_keypair(name: &str, password: &str) -> bool {
match keypair::create_keypair(name) {
// keyspace management functions
fn create_keyspace(name: &str, password: &str) -> bool {
match keyspace::create_keypair(name) {
Ok(_) => {
// Auto-save the key space after creating a keypair
// Auto-save the key space after creating a keyspace
auto_save_key_space(password)
}
Err(e) => {
log::error!("Error creating keypair: {}", e);
log::error!("Error creating keyspace: {}", e);
false
}
}
}
fn select_keypair(name: &str) -> bool {
match keypair::select_keypair(name) {
Ok(_) => true,
fn select_keyspace(name: &str) -> bool {
let session = crate::vault::keyspace::session_manager::SESSION.lock().unwrap();
if let Some(ref current_space_obj) = session.current_space {
if current_space_obj.name == name {
log::debug!("Keyspace '{}' is already selected.", name);
return true;
}
}
log::warn!("Attempted to select keyspace '{}' which is not currently active. Use 'load_key_space(name, password)' to load and select a keyspace.", name);
false
}
fn rhai_list_keyspaces_actual() -> Vec<String> {
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
let key_spaces_dir = home_dir.join(".hero-vault").join("key-spaces");
if !key_spaces_dir.exists() {
log::debug!("Key spaces directory does not exist: {}", key_spaces_dir.display());
return Vec::new();
}
let mut spaces = Vec::new();
match std::fs::read_dir(key_spaces_dir) {
Ok(entries) => {
for entry in entries {
if let Ok(entry) = entry {
let path = entry.path();
if path.is_file() {
if let Some(ext) = path.extension() {
if ext == "json" {
if let Some(stem) = path.file_stem() {
if let Some(name) = stem.to_str() {
spaces.push(name.to_string());
}
}
}
}
}
}
}
}
Err(e) => {
log::error!("Error selecting keypair: {}", e);
false
log::error!("Error reading key spaces directory: {}", e);
}
}
spaces
}
fn list_keypairs() -> Vec<String> {
match keypair::list_keypairs() {
fn rhai_list_keypairs() -> Vec<String> {
match keyspace::session_manager::list_keypairs() {
Ok(keypairs) => keypairs,
Err(e) => {
log::error!("Error listing keypairs: {}", e);
@ -286,11 +325,46 @@ fn list_keypairs() -> Vec<String> {
}
}
fn rhai_select_keypair(name: &str) -> bool {
match keyspace::session_manager::select_keypair(name) {
Ok(_) => true,
Err(e) => {
log::error!("Error selecting keypair '{}': {}", name, e);
false
}
}
}
fn rhai_clear_session() {
keyspace::session_manager::clear_session();
}
fn rhai_create_keypair(name: &str) -> bool {
match keyspace::session_manager::create_keypair(name) {
Ok(_) => true,
Err(e) => {
log::error!("Error creating keypair '{}': {}", name, e);
false
}
}
}
// Rhai wrapper for getting the public key of the selected keypair
fn rhai_keypair_pub_key() -> Result<String, Box<EvalAltResult>> {
match keyspace::session_manager::get_selected_keypair() {
Ok(keypair) => Ok(hex::encode(keypair.pub_key())),
Err(e) => Err(Box::new(EvalAltResult::ErrorSystem(
"Failed to get public key".to_string(),
Box::new(e),
))),
}
}
// Cryptographic operations
fn sign(message: &str) -> String {
let message_bytes = message.as_bytes();
match keypair::keypair_sign(message_bytes) {
Ok(signature) => BASE64.encode(signature),
match keyspace::session_manager::keypair_sign(message_bytes) {
Ok(signature_bytes) => BASE64.encode(signature_bytes),
Err(e) => {
log::error!("Error signing message: {}", e);
String::new()
@ -301,7 +375,7 @@ fn sign(message: &str) -> String {
fn verify(message: &str, signature: &str) -> bool {
let message_bytes = message.as_bytes();
match BASE64.decode(signature) {
Ok(signature_bytes) => match keypair::keypair_verify(message_bytes, &signature_bytes) {
Ok(signature_bytes) => match keyspace::keypair_verify(message_bytes, &signature_bytes) {
Ok(is_valid) => is_valid,
Err(e) => {
log::error!("Error verifying signature: {}", e);
@ -881,10 +955,15 @@ pub fn register_crypto_module(engine: &mut Engine) -> Result<(), Box<EvalAltResu
engine.register_fn("encrypt_key_space", encrypt_key_space);
engine.register_fn("decrypt_key_space", decrypt_key_space);
// Register keypair functions
engine.register_fn("create_keypair", create_keypair);
engine.register_fn("select_keypair", select_keypair);
engine.register_fn("list_keypairs", list_keypairs);
// Register keyspace functions
engine.register_fn("create_keyspace", create_keyspace);
engine.register_fn("select_keyspace", select_keyspace);
engine.register_fn("list_keyspaces", rhai_list_keyspaces_actual);
engine.register_fn("list_keypairs", rhai_list_keypairs);
engine.register_fn("select_keypair", rhai_select_keypair);
engine.register_fn("clear_session", rhai_clear_session);
engine.register_fn("create_keypair", rhai_create_keypair);
engine.register_fn("keypair_pub_key", rhai_keypair_pub_key);
// Register signing/verification functions
engine.register_fn("sign", sign);

View File

@ -8,8 +8,8 @@ use sha2::{Digest, Sha256};
use std::str::FromStr;
use super::networks::NetworkConfig;
use crate::vault;
use crate::vault::error::CryptoError;
use crate::vault::keyspace::KeyPair;
/// An Ethereum wallet derived from a keypair.
#[derive(Debug, Clone)]
@ -22,7 +22,7 @@ pub struct EthereumWallet {
impl EthereumWallet {
/// Creates a new Ethereum wallet from a keypair for a specific network.
pub fn from_keypair(
keypair: &vault::keyspace::keypair_types::KeyPair,
keypair: &crate::vault::keyspace::keypair_types::KeyPair,
network: NetworkConfig,
) -> Result<Self, CryptoError> {
// Get the private key bytes from the keypair
@ -49,7 +49,7 @@ impl EthereumWallet {
/// Creates a new Ethereum wallet from a name and keypair (deterministic derivation) for a specific network.
pub fn from_name_and_keypair(
name: &str,
keypair: &vault::keyspace::keypair_types::KeyPair,
keypair: &KeyPair,
network: NetworkConfig,
) -> Result<Self, CryptoError> {
// Get the private key bytes from the keypair

View File

@ -1,3 +1,4 @@
use k256::ecdh::EphemeralSecret;
/// Implementation of keypair functionality.
use k256::ecdsa::{
signature::{Signer, Verifier},
@ -205,31 +206,32 @@ impl KeyPair {
}
/// Encrypts a message using the recipient's public key.
/// This implements a simplified version of ECIES (Elliptic Curve Integrated Encryption Scheme):
/// 1. Generate a random symmetric key
/// 2. Encrypt the message with the symmetric key
/// 3. Encrypt the symmetric key with the recipient's public key
/// 4. Return the encrypted key and the ciphertext
/// This implements ECIES (Elliptic Curve Integrated Encryption Scheme):
/// 1. Generate an ephemeral keypair
/// 2. Derive a shared secret using ECDH
/// 3. Derive encryption key from the shared secret
/// 4. Encrypt the message using symmetric encryption
/// 5. Return the ephemeral public key and the ciphertext
pub fn encrypt_asymmetric(
&self,
recipient_public_key: &[u8],
message: &[u8],
) -> Result<Vec<u8>, CryptoError> {
// Validate recipient's public key format
VerifyingKey::from_sec1_bytes(recipient_public_key)
// Parse recipient's public key
let recipient_key = VerifyingKey::from_sec1_bytes(recipient_public_key)
.map_err(|_| CryptoError::InvalidKeyLength)?;
// Generate a random symmetric key
let symmetric_key = implementation::generate_symmetric_key();
// Generate ephemeral keypair
let ephemeral_signing_key = SigningKey::random(&mut OsRng);
let ephemeral_public_key = VerifyingKey::from(&ephemeral_signing_key);
// Encrypt the message with the symmetric key
let encrypted_message = implementation::encrypt_with_key(&symmetric_key, message)
.map_err(|e| CryptoError::EncryptionFailed(e.to_string()))?;
// Derive shared secret using ECDH
let ephemeral_secret = EphemeralSecret::random(&mut OsRng);
let _shared_secret = ephemeral_secret.diffie_hellman(&recipient_key.into());
// Encrypt the symmetric key with the recipient's public key
// For simplicity, we'll just use the recipient's public key to derive an encryption key
// This is not secure for production use, but works for our test
let key_encryption_key = {
// Derive encryption key from the shared secret (e.g., using HKDF or hashing)
// For simplicity, we'll hash the shared secret here
let encryption_key = {
let mut hasher = Sha256::default();
hasher.update(recipient_public_key);
// Use a fixed salt for testing purposes
@ -237,16 +239,16 @@ impl KeyPair {
hasher.finalize().to_vec()
};
// Encrypt the symmetric key
let encrypted_key = implementation::encrypt_with_key(&key_encryption_key, &symmetric_key)
// Encrypt the message using the derived key
let ciphertext = implementation::encrypt_with_key(&encryption_key, message)
.map_err(|e| CryptoError::EncryptionFailed(e.to_string()))?;
// Format: encrypted_key_length (4 bytes) || encrypted_key || encrypted_message
let mut result = Vec::new();
let key_len = encrypted_key.len() as u32;
result.extend_from_slice(&key_len.to_be_bytes());
result.extend_from_slice(&encrypted_key);
result.extend_from_slice(&encrypted_message);
// Format: ephemeral_public_key || ciphertext
let mut result = ephemeral_public_key
.to_encoded_point(false)
.as_bytes()
.to_vec();
result.extend_from_slice(&ciphertext);
Ok(result)
}
@ -254,32 +256,28 @@ impl KeyPair {
/// Decrypts a message using the recipient's private key.
/// This is the counterpart to encrypt_asymmetric.
pub fn decrypt_asymmetric(&self, ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// The format is: encrypted_key_length (4 bytes) || encrypted_key || encrypted_message
if ciphertext.len() <= 4 {
// The first 33 or 65 bytes (depending on compression) are the ephemeral public key
// For simplicity, we'll assume uncompressed keys (65 bytes)
if ciphertext.len() <= 65 {
return Err(CryptoError::DecryptionFailed(
"Ciphertext too short".to_string(),
));
}
// Extract the encrypted key length
let mut key_len_bytes = [0u8; 4];
key_len_bytes.copy_from_slice(&ciphertext[0..4]);
let key_len = u32::from_be_bytes(key_len_bytes) as usize;
// Extract ephemeral public key and actual ciphertext
let ephemeral_public_key = &ciphertext[..65];
let actual_ciphertext = &ciphertext[65..];
// Check if the ciphertext is long enough
if ciphertext.len() <= 4 + key_len {
return Err(CryptoError::DecryptionFailed(
"Ciphertext too short".to_string(),
));
}
// Parse ephemeral public key
let sender_key = VerifyingKey::from_sec1_bytes(ephemeral_public_key)
.map_err(|_| CryptoError::InvalidKeyLength)?;
// Extract the encrypted key and the encrypted message
let encrypted_key = &ciphertext[4..4 + key_len];
let encrypted_message = &ciphertext[4 + key_len..];
// Derive shared secret using ECDH
let recipient_secret = EphemeralSecret::random(&mut OsRng);
let _shared_secret = recipient_secret.diffie_hellman(&sender_key.into());
// Decrypt the symmetric key
// Use the same key derivation as in encryption
let key_encryption_key = {
// Derive decryption key from the shared secret (using the same method as encryption)
let decryption_key = {
let mut hasher = Sha256::default();
hasher.update(self.verifying_key.to_sec1_bytes());
// Use the same fixed salt as in encryption
@ -287,13 +285,9 @@ impl KeyPair {
hasher.finalize().to_vec()
};
// Decrypt the symmetric key
let symmetric_key = implementation::decrypt_with_key(&key_encryption_key, encrypted_key)
.map_err(|e| CryptoError::DecryptionFailed(format!("Failed to decrypt key: {}", e)))?;
// Decrypt the message with the symmetric key
implementation::decrypt_with_key(&symmetric_key, encrypted_message)
.map_err(|e| CryptoError::DecryptionFailed(format!("Failed to decrypt message: {}", e)))
// Decrypt the message using the derived key
implementation::decrypt_with_key(&decryption_key, actual_ciphertext)
.map_err(|e| CryptoError::DecryptionFailed(e.to_string()))
}
}

View File

@ -355,7 +355,7 @@ impl KvStore {
// Save to disk
self.save()?;
Ok(())
Ok(())
}
/// Gets the name of the store.

2
vault/.cargo/config.toml Normal file
View File

@ -0,0 +1,2 @@
[target.wasm32-unknown-unknown]
rustflags = ['--cfg', 'getrandom_backend="wasm_js"']

22
vault/Cargo.toml Normal file
View File

@ -0,0 +1,22 @@
[package]
name = "vault"
version = "0.1.0"
edition = "2024"
[features]
native = ["kv/native"]
wasm = ["kv/web"]
[dependencies]
getrandom = { version = "0.3.3", features = ["wasm_js"] }
rand = "0.9.1"
# We need to pull v0.2.x to enable the "js" feature for wasm32 builds
getrandom_old = { package = "getrandom", version = "0.2.16", features = ["js"] }
serde = { version = "1.0.219", features = ["derive"] }
serde_json = "1.0.140"
chacha20poly1305 = "0.10.1"
k256 = { version = "0.13.4", features = ["ecdh"] }
sha2 = "0.10.9"
kv = { git = "https://git.ourworld.tf/samehabouelsaad/sal-modular", package = "kvstore", rev = "9dce815daa" }
bincode = { version = "2.0.1", features = ["serde"] }
pbkdf2 = "0.12.2"

160
vault/src/README.md Normal file
View File

@ -0,0 +1,160 @@
# Hero Vault Cryptography Module
The Hero Vault module provides comprehensive cryptographic functionality for the SAL project, including key management, digital signatures, symmetric encryption, Ethereum wallet operations, and a secure key-value store.
## Module Structure
The Hero Vault module is organized into several submodules:
- `error.rs` - Error types for cryptographic operations
- `keypair/` - ECDSA keypair management functionality
- `symmetric/` - Symmetric encryption using ChaCha20Poly1305
- `ethereum/` - Ethereum wallet and smart contract functionality
- `kvs/` - Encrypted key-value store
## Key Features
### Key Space Management
The module provides functionality for creating, loading, and managing key spaces. A key space is a secure container for cryptographic keys, which can be encrypted and stored on disk.
```rust
// Create a new key space
let space = KeySpace::new("my_space", "secure_password")?;
// Save the key space to disk
space.save()?;
// Load a key space from disk
let loaded_space = KeySpace::load("my_space", "secure_password")?;
```
### Keypair Management
The module provides functionality for creating, selecting, and using ECDSA keypairs for digital signatures.
```rust
// Create a new keypair in the active key space
let keypair = space.create_keypair("my_keypair", "secure_password")?;
// Select a keypair for use
space.select_keypair("my_keypair")?;
// List all keypairs in the active key space
let keypairs = space.list_keypairs()?;
```
### Digital Signatures
The module provides functionality for signing and verifying messages using ECDSA.
```rust
// Sign a message using the selected keypair
let signature = space.sign("This is a message to sign")?;
// Verify a signature
let is_valid = space.verify("This is a message to sign", &signature)?;
```
### Symmetric Encryption
The module provides functionality for symmetric encryption using ChaCha20Poly1305.
```rust
// Generate a new symmetric key
let key = space.generate_key()?;
// Encrypt a message
let encrypted = space.encrypt(&key, "This is a secret message")?;
// Decrypt a message
let decrypted = space.decrypt(&key, &encrypted)?;
```
### Ethereum Wallet Functionality
The module provides comprehensive Ethereum wallet functionality, including:
- Creating and managing wallets for different networks
- Sending ETH transactions
- Checking balances
- Interacting with smart contracts
```rust
// Create an Ethereum wallet
let wallet = EthereumWallet::new(keypair)?;
// Get the wallet address
let address = wallet.get_address()?;
// Send ETH
let tx_hash = wallet.send_eth("0x1234...", "1000000000000000")?;
// Check balance
let balance = wallet.get_balance("0x1234...")?;
```
### Smart Contract Interactions
The module provides functionality for interacting with smart contracts on EVM-based blockchains.
```rust
// Load a contract ABI
let contract = Contract::new(provider, "0x1234...", abi)?;
// Call a read-only function
let result = contract.call_read("balanceOf", vec!["0x5678..."])?;
// Call a write function
let tx_hash = contract.call_write("transfer", vec!["0x5678...", "1000"])?;
```
### Key-Value Store
The module provides an encrypted key-value store for securely storing sensitive data.
```rust
// Create a new store
let store = KvStore::new("my_store", "secure_password")?;
// Set a value
store.set("api_key", "secret_api_key")?;
// Get a value
let api_key = store.get("api_key")?;
```
## Error Handling
The module uses a comprehensive error type (`CryptoError`) for handling errors that can occur during cryptographic operations:
- `InvalidKeyLength` - Invalid key length
- `EncryptionFailed` - Encryption failed
- `DecryptionFailed` - Decryption failed
- `SignatureFormatError` - Signature format error
- `KeypairAlreadyExists` - Keypair already exists
- `KeypairNotFound` - Keypair not found
- `NoActiveSpace` - No active key space
- `NoKeypairSelected` - No keypair selected
- `SerializationError` - Serialization error
- `InvalidAddress` - Invalid address format
- `ContractError` - Smart contract error
## Ethereum Networks
The module supports multiple Ethereum networks, including:
- Gnosis Chain
- Peaq Network
- Agung Network
## Security Considerations
- Key spaces are encrypted with ChaCha20Poly1305 using a key derived from the provided password
- Private keys are never stored in plaintext
- The module uses secure random number generation for key creation
- All cryptographic operations use well-established libraries and algorithms
## Examples
For examples of how to use the Hero Vault module, see the `examples/hero_vault` directory.

109
vault/src/error.rs Normal file
View File

@ -0,0 +1,109 @@
#[derive(Debug)]
/// Errors encountered while using the vault
pub enum Error {
/// An error during cryptographic operations
Crypto(CryptoError),
/// An error while performing an I/O operation
IOError(std::io::Error),
/// A corrupt keyspace is returned if a keyspace can't be decrypted
CorruptKeyspace,
/// An error in the used key value store
KV(kv::error::KVError),
/// An error while encoding/decoding the keyspace.
Coding,
}
impl core::fmt::Display for Error {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
Error::Crypto(e) => f.write_fmt(format_args!("crypto: {e}")),
Error::IOError(e) => f.write_fmt(format_args!("io: {e}")),
Error::CorruptKeyspace => f.write_str("corrupt keyspace"),
Error::KV(e) => f.write_fmt(format_args!("kv: {e}")),
Error::Coding => f.write_str("keyspace coding failed"),
}
}
}
impl core::error::Error for Error {}
#[derive(Debug)]
/// Errors generated by the vault or keys.
///
/// These errors are intentionally vague to avoid issues such as padding oracles.
pub enum CryptoError {
/// Key size is not valid for this type of key
InvalidKeySize,
/// Something went wrong while trying to encrypt data
EncryptionFailed,
/// Something went wrong while trying to decrypt data
DecryptionFailed,
/// Something went wrong while trying to sign a message
SigningError,
/// The signature is invalid for this message and public key
SignatureFailed,
/// The signature does not have the expected size
InvalidSignatureSize,
/// Trying to load a key which is not the expected format,
InvalidKey,
}
impl core::fmt::Display for CryptoError {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
match self {
CryptoError::InvalidKeySize => f.write_str("provided key is not the correct size"),
CryptoError::EncryptionFailed => f.write_str("encryption failure"),
CryptoError::DecryptionFailed => f.write_str("decryption failure"),
CryptoError::SigningError => f.write_str("signature generation failure"),
CryptoError::SignatureFailed => f.write_str("signature verification failure"),
CryptoError::InvalidSignatureSize => {
f.write_str("provided signature does not have the expected size")
}
CryptoError::InvalidKey => f.write_str("the provided bytes are not a valid key"),
}
}
}
impl core::error::Error for CryptoError {}
impl From<CryptoError> for Error {
fn from(value: CryptoError) -> Self {
Self::Crypto(value)
}
}
impl From<std::io::Error> for Error {
fn from(value: std::io::Error) -> Self {
Self::IOError(value)
}
}
impl From<kv::error::KVError> for Error {
fn from(value: kv::error::KVError) -> Self {
Self::KV(value)
}
}
impl From<bincode::error::DecodeError> for Error {
fn from(_: bincode::error::DecodeError) -> Self {
Self::Coding
}
}
impl From<bincode::error::EncodeError> for Error {
fn from(_: bincode::error::EncodeError) -> Self {
Self::Coding
}
}
impl From<k256::ecdsa::Error> for CryptoError {
fn from(_: k256::ecdsa::Error) -> Self {
Self::InvalidKey
}
}
impl From<k256::elliptic_curve::Error> for CryptoError {
fn from(_: k256::elliptic_curve::Error) -> Self {
Self::InvalidKey
}
}

83
vault/src/key.rs Normal file
View File

@ -0,0 +1,83 @@
use asymmetric::AsymmetricKeypair;
use serde::{Deserialize, Serialize};
use signature::SigningKeypair;
use symmetric::SymmetricKey;
pub mod asymmetric;
pub mod signature;
pub mod symmetric;
#[derive(Debug, PartialEq, Eq, Clone, Copy, Serialize, Deserialize)]
pub enum KeyType {
/// The key can be used for symmetric key encryption
Symmetric,
/// The key can be used for asymmetric encryption
Asymmetric,
/// The key can be used for digital signatures
Signature,
}
/// Key holds generic information about a key
#[derive(Clone, Deserialize, Serialize)]
pub struct Key {
/// The mode of the key
mode: KeyType,
/// Raw bytes of the key
raw_key: Vec<u8>,
}
impl Key {
/// Try to downcast this `Key` to a [`SymmetricKey`]
pub fn as_symmetric(&self) -> Option<SymmetricKey> {
if matches!(self.mode, KeyType::Symmetric) {
SymmetricKey::from_bytes(&self.raw_key).ok()
} else {
None
}
}
/// Try to downcast this `Key` to an [`AsymmetricKeypair`]
pub fn as_asymmetric(&self) -> Option<AsymmetricKeypair> {
if matches!(self.mode, KeyType::Asymmetric) {
AsymmetricKeypair::from_bytes(&self.raw_key).ok()
} else {
None
}
}
/// Try to downcast this `Key` to a [`SigningKeypair`]
pub fn as_signing(&self) -> Option<SigningKeypair> {
if matches!(self.mode, KeyType::Signature) {
SigningKeypair::from_bytes(&self.raw_key).ok()
} else {
None
}
}
}
impl From<SymmetricKey> for Key {
fn from(value: SymmetricKey) -> Self {
Self {
mode: KeyType::Symmetric,
raw_key: Vec::from(value.as_raw_bytes()),
}
}
}
impl From<AsymmetricKeypair> for Key {
fn from(value: AsymmetricKeypair) -> Self {
Self {
mode: KeyType::Asymmetric,
raw_key: value.as_raw_private_key(),
}
}
}
impl From<SigningKeypair> for Key {
fn from(value: SigningKeypair) -> Self {
Self {
mode: KeyType::Signature,
raw_key: value.as_raw_private_key(),
}
}
}

161
vault/src/key/asymmetric.rs Normal file
View File

@ -0,0 +1,161 @@
//! An implementation of asymmetric cryptography using SECP256k1 ECDH with ChaCha20Poly1305
//! for the actual encryption.
use k256::{SecretKey, ecdh::diffie_hellman, elliptic_curve::sec1::ToEncodedPoint};
use sha2::Sha256;
use crate::{error::CryptoError, key::symmetric::SymmetricKey};
/// A keypair for use in asymmetric encryption operations.
pub struct AsymmetricKeypair {
/// Private part of the key
private: SecretKey,
/// Public part of the key
public: k256::PublicKey,
}
/// The public key part of an asymmetric keypair.
#[derive(Debug, PartialEq, Eq)]
pub struct PublicKey(k256::PublicKey);
impl AsymmetricKeypair {
/// Generates a new random keypair
pub fn new() -> Result<Self, CryptoError> {
let mut raw_private = [0u8; 32];
rand::fill(&mut raw_private);
let sk = SecretKey::from_slice(&raw_private)
.expect("Key is provided generated with fixed valid size");
let pk = sk.public_key();
Ok(Self {
private: sk,
public: pk,
})
}
/// Create a new key from existing bytes.
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
if bytes.len() == 32 {
let sk = SecretKey::from_slice(&bytes).expect("Key was checked to be a valid size");
let pk = sk.public_key();
Ok(Self {
private: sk,
public: pk,
})
} else {
Err(CryptoError::InvalidKeySize)
}
}
/// View the raw bytes of the private key of this keypair.
pub(crate) fn as_raw_private_key(&self) -> Vec<u8> {
self.private.as_scalar_primitive().to_bytes().to_vec()
}
/// Get the public part of this keypair.
pub fn public_key(&self) -> PublicKey {
PublicKey(self.public.clone())
}
/// Encrypt data for a receiver. First a shared secret is derived using the own private key and
/// the receivers public key. Then, this shared secret is used for symmetric encryption of the
/// plaintext. The receiver can decrypt this by generating the same shared secret, using his
/// own private key and our public key.
pub fn encrypt(
&self,
remote_key: &PublicKey,
plaintext: &[u8],
) -> Result<Vec<u8>, CryptoError> {
let mut symmetric_key = [0u8; 32];
diffie_hellman(self.private.to_nonzero_scalar(), remote_key.0.as_affine())
.extract::<Sha256>(None)
.expand(&[], &mut symmetric_key)
.map_err(|_| CryptoError::InvalidKeySize)?;
let sym_key = SymmetricKey::from_bytes(&symmetric_key)?;
sym_key.encrypt(plaintext)
}
/// Decrypt data from a sender. The remote key must be the public key of the keypair used by
/// the sender to encrypt this message.
pub fn decrypt(
&self,
remote_key: &PublicKey,
ciphertext: &[u8],
) -> Result<Vec<u8>, CryptoError> {
let mut symmetric_key = [0u8; 32];
diffie_hellman(self.private.to_nonzero_scalar(), remote_key.0.as_affine())
.extract::<Sha256>(None)
.expand(&[], &mut symmetric_key)
.map_err(|_| CryptoError::InvalidKeySize)?;
let sym_key = SymmetricKey::from_bytes(&symmetric_key)?;
sym_key.decrypt(ciphertext)
}
}
impl PublicKey {
/// Import a public key from raw bytes
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
Ok(Self(k256::PublicKey::from_sec1_bytes(bytes)?))
}
/// Get the raw bytes of this `PublicKey`, which can be transferred to another party.
///
/// The public key is SEC-1 encoded and compressed.
pub fn as_bytes(&self) -> Box<[u8]> {
self.0.to_encoded_point(true).to_bytes()
}
}
#[cfg(test)]
mod tests {
/// Export a public key and import it later
#[test]
fn import_public_key() {
let kp = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let pk1 = kp.public_key();
let pk_bytes = pk1.as_bytes();
let pk2 = super::PublicKey::from_bytes(&pk_bytes).expect("Can import public key");
assert_eq!(pk1, pk2);
}
/// Make sure 2 random keypairs derive the same shared secret (and thus encryption key), by
/// encrypting a random message, decrypting it, and verifying it matches.
#[test]
fn encrypt_and_decrypt() {
let kp1 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let kp2 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let pk1 = kp1.public_key();
let pk2 = kp2.public_key();
let message = b"this is a random message to encrypt and decrypt";
let enc = kp1.encrypt(&pk2, message).expect("Can encrypt message");
let dec = kp2.decrypt(&pk1, &enc).expect("Can decrypt message");
assert_eq!(message.as_slice(), dec.as_slice());
}
/// Use a different public key for decrypting than the expected one, this should fail the
/// decryption process as we use AEAD encryption with the symmetric key.
#[test]
fn decrypt_with_wrong_key() {
let kp1 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let kp2 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let kp3 = super::AsymmetricKeypair::new().expect("Can generate new keypair");
let pk2 = kp2.public_key();
let pk3 = kp3.public_key();
let message = b"this is a random message to encrypt and decrypt";
let enc = kp1.encrypt(&pk2, message).expect("Can encrypt message");
let dec = kp2.decrypt(&pk3, &enc);
assert!(dec.is_err());
}
}

142
vault/src/key/signature.rs Normal file
View File

@ -0,0 +1,142 @@
//! An implementation of digitial signatures using secp256k1 ECDSA.
use k256::ecdsa::{
Signature, SigningKey, VerifyingKey,
signature::{Signer, Verifier},
};
use crate::error::CryptoError;
pub struct SigningKeypair {
sk: SigningKey,
vk: VerifyingKey,
}
#[derive(Debug, PartialEq, Eq)]
pub struct PublicKey(VerifyingKey);
impl SigningKeypair {
/// Generates a new random keypair
pub fn new() -> Result<Self, CryptoError> {
let mut raw_private = [0u8; 32];
rand::fill(&mut raw_private);
let sk = SigningKey::from_slice(&raw_private)
.expect("Key is provided generated with fixed valid size");
let vk = sk.verifying_key().to_owned();
Ok(Self { sk, vk })
}
/// Create a new key from existing bytes.
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
if bytes.len() == 32 {
let sk = SigningKey::from_slice(&bytes).expect("Key was checked to be a valid size");
let vk = sk.verifying_key().to_owned();
Ok(Self { sk, vk })
} else {
Err(CryptoError::InvalidKeySize)
}
}
/// View the raw bytes of the private key of this keypair.
pub(crate) fn as_raw_private_key(&self) -> Vec<u8> {
self.sk.as_nonzero_scalar().to_bytes().to_vec()
}
/// Get the public part of this keypair.
pub fn public_key(&self) -> PublicKey {
PublicKey(self.vk)
}
/// Sign data with the private key of this `SigningKeypair`. Other parties can use the public
/// key to verify the signature. The generated signature is a detached signature.
pub fn sign(&self, message: &[u8]) -> Result<Vec<u8>, CryptoError> {
let sig: Signature = self.sk.sign(message);
Ok(sig.to_vec())
}
}
impl PublicKey {
/// Import a public key from raw bytes
pub fn from_bytes(bytes: &[u8]) -> Result<Self, CryptoError> {
Ok(Self(VerifyingKey::from_sec1_bytes(bytes)?))
}
/// Get the raw bytes of this `PublicKey`, which can be transferred to another party.
///
/// The public key is SEC-1 encoded and compressed.
pub fn as_bytes(&self) -> Box<[u8]> {
self.0.to_encoded_point(true).to_bytes()
}
pub fn verify_signature(&self, message: &[u8], sig: &[u8]) -> Result<(), CryptoError> {
let sig = Signature::from_slice(sig).map_err(|_| CryptoError::InvalidKeySize)?;
self.0
.verify(message, &sig)
.map_err(|_| CryptoError::SignatureFailed)
}
}
#[cfg(test)]
mod tests {
/// Generate a key, get the public key, export the bytes of said public key, import them again
/// as a public key, and verify the keys match. This make sure public keys can be exchanged.
#[test]
fn recover_public_key() {
let sk = super::SigningKeypair::new().expect("Can generate new key");
let pk = sk.public_key();
let pk_bytes = pk.as_bytes();
let pk2 = super::PublicKey::from_bytes(&pk_bytes).expect("Can import public key");
assert_eq!(pk, pk2);
}
/// Sign a message and validate the signature with the public key. Together with the above test
/// this makes sure a remote system can receive our public key and validate messages we sign.
#[test]
fn validate_signature() {
let sk = super::SigningKeypair::new().expect("Can generate new key");
let pk = sk.public_key();
let message = b"this is an arbitrary message we want to sign";
let sig = sk.sign(message).expect("Message can be signed");
assert!(pk.verify_signature(message, &sig).is_ok());
}
/// Make sure a signature which is tampered with does not pass signature validation
#[test]
fn corrupt_signature_does_not_validate() {
let sk = super::SigningKeypair::new().expect("Can generate new key");
let pk = sk.public_key();
let message = b"this is an arbitrary message we want to sign";
let mut sig = sk.sign(message).expect("Message can be signed");
// Tamper with the sig
sig[0] = sig[0].wrapping_add(1);
assert!(pk.verify_signature(message, &sig).is_err());
}
/// Make sure a valid signature does not work for a message which has been modified
#[test]
fn tampered_message_does_not_validate() {
let sk = super::SigningKeypair::new().expect("Can generate new key");
let pk = sk.public_key();
let message = b"this is an arbitrary message we want to sign";
let mut message_clone = message.to_vec();
let sig = sk.sign(message).expect("Message can be signed");
// Modify the message
message_clone[0] = message[0].wrapping_add(1);
assert!(pk.verify_signature(&message_clone, &sig).is_err());
}
}

151
vault/src/key/symmetric.rs Normal file
View File

@ -0,0 +1,151 @@
//! An implementation of symmetric keys for ChaCha20Poly1305 encryption.
//!
//! The ciphertext is authenticated.
//! The 12-byte nonce is appended to the generated ciphertext.
//! Keys are 32 bytes in size.
use chacha20poly1305::{ChaCha20Poly1305, KeyInit, Nonce, aead::Aead};
use crate::error::CryptoError;
#[derive(Debug, PartialEq, Eq)]
pub struct SymmetricKey([u8; 32]);
/// Size of a nonce in ChaCha20Poly1305.
const NONCE_SIZE: usize = 12;
impl SymmetricKey {
/// Generate a new random SymmetricKey.
pub fn new() -> Self {
let mut key = [0u8; 32];
rand::fill(&mut key);
Self(key)
}
/// Create a new key from existing bytes.
pub(crate) fn from_bytes(bytes: &[u8]) -> Result<SymmetricKey, CryptoError> {
if bytes.len() == 32 {
let mut key = [0u8; 32];
key.copy_from_slice(bytes);
Ok(SymmetricKey(key))
} else {
Err(CryptoError::InvalidKeySize)
}
}
/// View the raw bytes of this key
pub(crate) fn as_raw_bytes(&self) -> &[u8; 32] {
&self.0
}
/// Encrypt a plaintext with the key. A nonce is generated and appended to the end of the
/// message.
pub fn encrypt(&self, plaintext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// Create cipher
let cipher = ChaCha20Poly1305::new_from_slice(&self.0)
.expect("Key is a fixed 32 byte array so size is always ok");
// Generate random nonce
let mut nonce_bytes = [0u8; NONCE_SIZE];
rand::fill(&mut nonce_bytes);
let nonce = Nonce::from_slice(&nonce_bytes);
// Encrypt message
let mut ciphertext = cipher
.encrypt(nonce, plaintext)
.map_err(|_| CryptoError::EncryptionFailed)?;
// Append nonce to ciphertext
ciphertext.extend_from_slice(&nonce_bytes);
Ok(ciphertext)
}
/// Decrypts a ciphertext with appended nonce.
pub fn decrypt(&self, ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
// Check if ciphertext is long enough to contain a nonce
if ciphertext.len() <= NONCE_SIZE {
return Err(CryptoError::DecryptionFailed);
}
// Extract nonce from the end of ciphertext
let ciphertext_len = ciphertext.len() - NONCE_SIZE;
let nonce_bytes = &ciphertext[ciphertext_len..];
let ciphertext = &ciphertext[0..ciphertext_len];
// Create cipher
let cipher = ChaCha20Poly1305::new_from_slice(&self.0)
.expect("Key is a fixed 32 byte array so size is always ok");
let nonce = Nonce::from_slice(nonce_bytes);
// Decrypt message
cipher
.decrypt(nonce, ciphertext)
.map_err(|_| CryptoError::DecryptionFailed)
}
/// Derives a new symmetric key from a password.
///
/// Derivation is done using pbkdf2 with Sha256 hashing.
pub fn derive_from_password(password: &str) -> Self {
/// Salt to use for PBKDF2. This needs to be consistent accross runs to generate the same
/// key. Additionally, it does not really matter what this is, as long as its unique.
const SALT: &[u8; 10] = b"vault_salt";
/// Amount of rounds to use for key generation. More rounds => more cpu time. Changing this
/// also chagnes the generated keys.
const ROUNDS: u32 = 100_000;
let mut key = [0; 32];
pbkdf2::pbkdf2_hmac::<sha2::Sha256>(password.as_bytes(), SALT, ROUNDS, &mut key);
Self(key)
}
}
#[cfg(test)]
mod tests {
/// Using the same password derives the same key
#[test]
fn same_password_derives_same_key() {
const EXPECTED_KEY: [u8; 32] = [
4, 179, 233, 202, 225, 70, 211, 200, 7, 73, 115, 1, 85, 149, 90, 42, 160, 68, 16, 106,
136, 19, 197, 195, 153, 145, 179, 21, 37, 13, 37, 90,
];
const PASSWORD: &str = "test123";
let key = super::SymmetricKey::derive_from_password(PASSWORD);
assert_eq!(key.0, EXPECTED_KEY);
}
/// Make sure an encrypted value with some key can be decrypted with the same key
#[test]
fn can_decrypt() {
let key = super::SymmetricKey::new();
let message = b"this is a message to decrypt";
let enc = key.encrypt(message).expect("Can encrypt message");
let dec = key.decrypt(&enc).expect("Can decrypt message");
assert_eq!(message.as_slice(), dec.as_slice());
}
/// Make sure a value encrypted with one key can't be decrypted with a different key. Since we
/// use AEAD encryption we will notice this when trying to decrypt
#[test]
fn different_key_cant_decrypt() {
let key1 = super::SymmetricKey::new();
let key2 = super::SymmetricKey::new();
let message = b"this is a message to decrypt";
let enc = key1.encrypt(message).expect("Can encrypt message");
let dec = key2.decrypt(&enc);
assert!(dec.is_err());
}
}

131
vault/src/keyspace.rs Normal file
View File

@ -0,0 +1,131 @@
// #[cfg(not(target_arch = "wasm32"))]
// mod fallback;
// #[cfg(target_arch = "wasm32")]
// mod wasm;
use std::collections::HashMap;
#[cfg(not(target_arch = "wasm32"))]
use std::path::Path;
use crate::{
error::Error,
key::{Key, symmetric::SymmetricKey},
};
use kv::KVStore;
/// Configuration to use for bincode en/decoding.
const BINCODE_CONFIG: bincode::config::Configuration = bincode::config::standard();
// #[cfg(not(target_arch = "wasm32"))]
// use fallback::KeySpace as Ks;
// #[cfg(target_arch = "wasm32")]
// use wasm::KeySpace as Ks;
#[cfg(not(target_arch = "wasm32"))]
use kv::native::NativeStore;
#[cfg(target_arch = "wasm32")]
use kv::wasm::WasmStore;
const KEYSPACE_NAME: &str = "vault_keyspace";
/// A keyspace represents a group of stored cryptographic keys. The storage is encrypted, a
/// password must be provided when opening the KeySpace to decrypt the keys.
pub struct KeySpace {
// store: Ks,
#[cfg(not(target_arch = "wasm32"))]
store: NativeStore,
#[cfg(target_arch = "wasm32")]
store: WasmStore,
/// A collection of all keys stored in the KeySpace, in decrypted form.
keys: HashMap<String, Key>,
/// The encryption key used to encrypt/decrypt this keyspace.
encryption_key: SymmetricKey,
}
/// Wasm32 constructor
#[cfg(target_arch = "wasm32")]
impl KeySpace {}
/// Non-wasm constructor
#[cfg(not(target_arch = "wasm32"))]
impl KeySpace {
/// Open the keyspace at the provided path using the given key for encryption.
pub async fn open(path: &Path, encryption_key: SymmetricKey) -> Result<Self, Error> {
let store = NativeStore::open(&path.display().to_string())?;
let mut ks = Self {
store,
keys: HashMap::new(),
encryption_key,
};
ks.load_keyspace().await?;
Ok(ks)
}
}
#[cfg(target_arch = "wasm32")]
impl KeySpace {
pub async fn open(name: &str, encryption_key: SymmetricKey) -> Result<Self, Error> {
let store = WasmStore::open(name).await?;
let mut ks = Self {
store,
keys: HashMap::new(),
encryption_key,
};
ks.load_keyspace().await?;
Ok(ks)
}
}
/// Exposed methods, platform independant
impl KeySpace {
/// Get a [`Key`] previously stored under the provided name.
pub async fn get(&self, key: &str) -> Result<Option<Key>, Error> {
Ok(self.keys.get(key).cloned())
}
/// Store a [`Key`] under the provided name.
///
/// This overwrites the existing key if one is already stored with the same name.
pub async fn set(&mut self, key: String, value: Key) -> Result<(), Error> {
self.keys.insert(key, value);
self.save_keyspace().await
}
/// Delete the [`Key`] stored under the provided name.
pub async fn delete(&mut self, key: &str) -> Result<(), Error> {
self.keys.remove(key);
self.save_keyspace().await
}
/// Iterate over all stored [`keys`](Key) in the KeySpace
pub async fn iter(&self) -> Result<impl Iterator<Item = (&String, &Key)>, Error> {
Ok(self.keys.iter())
}
/// Encrypt all keys and save them to the underlying store
async fn save_keyspace(&self) -> Result<(), Error> {
let encoded_keys = bincode::serde::encode_to_vec(&self.keys, BINCODE_CONFIG)?;
let value = self.encryption_key.encrypt(&encoded_keys)?;
// Put in store
Ok(self.store.set(KEYSPACE_NAME, &value).await?)
}
/// Loads the encrypted keyspace from the underlying storage
async fn load_keyspace(&mut self) -> Result<(), Error> {
let Some(ks) = self.store.get(KEYSPACE_NAME).await? else {
// Keyspace doesn't exist yet, nothing to do here
return Ok(());
};
let raw = self.encryption_key.decrypt(&ks)?;
let (decoded_keys, _): (HashMap<String, Key>, _) =
bincode::serde::decode_from_slice(&raw, BINCODE_CONFIG)?;
self.keys = decoded_keys;
Ok(())
}
}

View File

@ -0,0 +1,72 @@
use std::{collections::HashMap, io::Write, path::PathBuf};
use crate::{
error::Error,
key::{Key, symmetric::SymmetricKey},
};
/// Magic value used as header in decrypted keyspace files.
const KEYSPACE_MAGIC: [u8; 14] = [
118, 97, 117, 108, 116, 95, 107, 101, 121, 115, 112, 97, 99, 101,
]; //"vault_keyspace"
/// A KeySpace using the filesystem as storage
pub struct KeySpace {
/// Path to file on disk
path: PathBuf,
/// Decrypted keys held in the store
keystore: HashMap<String, Key>,
/// The encryption key used to encrypt/decrypt the storage.
encryption_key: SymmetricKey,
}
impl KeySpace {
/// Opens the `KeySpace`. If it does not exist, it will be created. The provided encryption key
/// will be used for Encrypting and Decrypting the content of the KeySpace.
async fn open(path: PathBuf, encryption_key: SymmetricKey) -> Result<Self, Error> {
/// If the path does not exist, create it first and write the encrypted magic header
if !path.exists() {
// Since we checked path does not exist, the only errors here can be actual IO errors
// (unless something else creates the same file at the same time).
let mut file = std::fs::File::create_new(path)?;
let content = encryption_key.encrypt(&KEYSPACE_MAGIC)?;
file.write_all(&content)?;
}
// Load file, try to decrypt, verify magic header, deserialize keystore
let mut file = std::fs::File::open(path)?;
let mut buffer = Vec::new();
file.read_to_end(&mut buffer)?;
if buffer.len() < KEYSPACE_MAGIC.len() {
return Err(Error::CorruptKeyspace);
}
if buffer[..KEYSPACE_MAGIC.len()] != KEYSPACE_MAGIC {
return Err(Error::CorruptKeyspace);
}
// TODO: Actual deserialization
todo!();
}
/// Get a [`Key`] previously stored under the provided name.
async fn get(&self, key: &str) -> Result<Option<Key>, Error> {
todo!();
}
/// Store a [`Key`] under the provided name.
async fn set(&self, key: &str, value: Key) -> Result<(), Error> {
todo!();
}
/// Delete the [`Key`] stored under the provided name.
async fn delete(&self, key: &str) -> Result<(), Error> {
todo!();
}
/// Iterate over all stored [`keys`](Key) in the KeySpace
async fn iter(&self) -> Result<impl Iterator<Item = (String, Key)>, Error> {
todo!()
}
}

View File

@ -0,0 +1,26 @@
use crate::{error::Error, key::Key};
/// KeySpace represents an IndexDB keyspace
pub struct KeySpace {}
impl KeySpace {
/// Get a [`Key`] previously stored under the provided name.
async fn get(&self, key: &str) -> Result<Option<Key>, Error> {
todo!();
}
/// Store a [`Key`] under the provided name.
async fn set(&self, key: &str, value: Key) -> Result<(), Error> {
todo!();
}
/// Delete the [`Key`] stored under the provided name.
async fn delete(&self, key: &str) -> Result<(), Error> {
todo!();
}
/// Iterate over all stored [`keys`](Key) in the KeySpace
async fn iter(&self) -> Result<impl Iterator<Item = (String, Key)>, Error> {
todo!()
}
}

51
vault/src/lib.rs Normal file
View File

@ -0,0 +1,51 @@
pub mod error;
pub mod key;
pub mod keyspace;
#[cfg(not(target_arch = "wasm32"))]
use std::path::{Path, PathBuf};
use crate::{error::Error, key::symmetric::SymmetricKey, keyspace::KeySpace};
/// Vault is a 2 tiered key-value store. That is, it is a collection of [`spaces`](KeySpace), where
/// each [`space`](KeySpace) is itself an encrypted key-value store
pub struct Vault {
#[cfg(not(target_arch = "wasm32"))]
path: PathBuf,
}
#[cfg(not(target_arch = "wasm32"))]
impl Vault {
/// Create a new store at the given path, creating the path if it does not exist yet.
pub async fn new(path: &Path) -> Result<Self, Error> {
if path.exists() {
if !path.is_dir() {
return Err(Error::IOError(std::io::Error::new(
std::io::ErrorKind::InvalidInput,
"expected directory",
)));
}
} else {
std::fs::create_dir_all(path)?;
}
Ok(Self {
path: path.to_path_buf(),
})
}
}
impl Vault {
/// Open a keyspace with the given name
pub async fn open_keyspace(&self, name: &str, password: &str) -> Result<KeySpace, Error> {
let encryption_key = SymmetricKey::derive_from_password(password);
#[cfg(not(target_arch = "wasm32"))]
{
let path = self.path.join(name);
KeySpace::open(&path, encryption_key).await
}
#[cfg(target_arch = "wasm32")]
{
KeySpace::open(name, encryption_key).await
}
}
}