29 KiB
Arrays
{{#include ../links.md}}
Always limit the [maximum size of arrays].
Arrays are first-class citizens in Rhai.
All elements stored in an array are [Dynamic
], and the array can freely grow or shrink with
elements added or removed.
The Rust type of a Rhai array is rhai::Array
which is an alias to Vec<Dynamic>
.
[type_of()
] an array returns "array"
.
Arrays are disabled via the [no_index
] feature.
Literal Syntax
Array literals are built within square brackets [
... ]
and separated by commas ,
:
[
value,
value,
...,
value]
[
value,
value,
...,
value,
]
// trailing comma is OK
Element Access Syntax
From beginning
Like C, arrays are accessed with zero-based, non-negative integer indices:
array
[
index position from 0 to (length−1)]
From end
A negative position accesses an element in the array counting from the end, with −1 being the last element.
array
[
index position from −1 to −length]
Out-of-Bounds Index
Trying to read from an index that is out of bounds causes an error.
For fine-tuned control on what happens when an out-of-bounds index is accessed,
see [_Out-of-Bounds Index for Arrays_](arrays-oob.md).
Built-in Functions
The following methods (mostly defined in the [BasicArrayPackage
][built-in packages] but excluded
when using a [raw Engine
]) operate on arrays.
Function | Parameter(s) | Description |
---|---|---|
get |
position, counting from end if < 0 | gets a copy of the element at a certain position ([() ] if the position is not valid) |
set |
|
sets a certain position to a new value (no effect if the position is not valid) |
push , += operator |
element to append (not an array) | appends an element to the end |
append , += operator |
array to append | concatenates the second array to the end of the first |
+ operator |
|
concatenates the first array with the second |
== operator |
|
are two arrays the same (elements compared with the == operator, if defined)? |
!= operator |
|
are two arrays different (elements compared with the == operator, if defined)? |
insert |
|
inserts an element at a certain position |
pop |
none | removes the last element and returns it ([() ] if empty) |
shift |
none | removes the first element and returns it ([() ] if empty) |
extract |
|
extracts a portion of the array into a new array |
extract |
[range] of elements to extract, from beginning if ≤ 0, to end if ≥ length | extracts a portion of the array into a new array |
remove |
position, counting from end if < 0 | removes an element at a particular position and returns it ([() ] if the position is not valid) |
reverse |
none | reverses the array |
len method and property |
none | returns the number of elements |
is_empty method and property |
none | returns true if the array is empty |
pad |
|
pads the array with an element to at least a specified length |
clear |
none | empties the array |
truncate |
target length | cuts off the array at exactly a specified length (discarding all subsequent elements) |
chop |
target length | cuts off the head of the array, leaving the tail at exactly a specified length |
split |
|
splits the array into two arrays, starting from a specified position |
for_each |
[function pointer] for processing elements | run through each element in the array in order, binding each to this and calling the processing function taking the following parameters:
|
drain |
[function pointer] to predicate (usually a [closure]) | removes all elements (returning them) that return true when called with the predicate function taking the following parameters (if none, the array element is bound to this ):
|
drain |
|
removes a portion of the array, returning the removed elements as a new array |
drain |
[range] of elements to remove, from beginning if ≤ 0, to end if ≥ length | removes a portion of the array, returning the removed elements as a new array |
retain |
[function pointer] to predicate (usually a [closure]) | removes all elements (returning them) that do not return true when called with the predicate function taking the following parameters (if none, the array element is bound to this ):
|
retain |
|
retains a portion of the array, removes all other elements and returning them as a new array |
retain |
[range] of elements to retain, from beginning if ≤ 0, to end if ≥ length | retains a portion of the array, removes all other bytes and returning them as a new array |
splice |
|
replaces a portion of the array with another (not necessarily of the same length as the replaced portion) |
splice |
|
replaces a portion of the array with another (not necessarily of the same length as the replaced portion) |
filter |
[function pointer] to predicate (usually a [closure]) | constructs a new array with all elements that return true when called with the predicate function taking the following parameters (if none, the array element is bound to this ):
|
contains , [in ] operator |
element to find | does the array contain an element? The == operator (if defined) is used to compare [custom types] |
index_of |
|
returns the position of the first element in the array that equals the supplied element (using the == operator, if defined), or −1 if not found |
index_of |
|
returns the position of the first element in the array that returns true when called with the predicate function, or −1 if not found:
|
find |
|
returns the first element in the array that returns true when called with the predicate function, or [() ] if not found:
|
find_map |
|
returns the first non-[() ] value of the first element in the array when called with the predicate function, or [() ] if not found:
|
dedup |
(optional) [function pointer] to predicate (usually a [closure]); if omitted, the == operator is used, if defined |
removes all but the first of consecutive elements in the array that return true when called with the predicate function (non-consecutive duplicates are not removed):1st & 2nd parameters: two elements in the array |
map |
[function pointer] to conversion function (usually a [closure]) | constructs a new array with all elements mapped to the result of applying the conversion function taking the following parameters (if none, the array element is bound to this ):
|
reduce |
|
reduces the array into a single value via the accumulator function taking the following parameters (if the second parameter is omitted, the array element is bound to this ):
|
reduce_rev |
|
reduces the array (in reverse order) into a single value via the accumulator function taking the following parameters (if the second parameter is omitted, the array element is bound to this ):
|
zip |
|
constructs a new array with all element pairs from two arrays mapped to the result of applying the conversion function taking the following parameters:
|
some |
[function pointer] to predicate (usually a [closure]) | returns true if any element returns true when called with the predicate function taking the following parameters (if none, the array element is bound to this ):
|
all |
[function pointer] to predicate (usually a [closure]) | returns true if all elements return true when called with the predicate function taking the following parameters (if none, the array element is bound to this ):
|
sort |
[function pointer] to a comparison function (usually a [closure]) | sorts the array with a comparison function taking the following parameters:
|
sort |
none | sorts a homogeneous array containing only elements of the same comparable built-in type (INT , FLOAT , [Decimal ][rust_decimal], [string], [character], bool , [() ]) |
To use a [custom type] with arrays, a number of functions need to be manually implemented,
in particular the `==` operator in order to support the [`in`] operator which uses `==` (via the
`contains` method) to compare elements.
See the section on [custom types] for more details.
Examples
let y = [2, 3]; // y == [2, 3]
let y = [2, 3,]; // y == [2, 3]
y.insert(0, 1); // y == [1, 2, 3]
y.insert(999, 4); // y == [1, 2, 3, 4]
y.len == 4;
y[0] == 1;
y[1] == 2;
y[2] == 3;
y[3] == 4;
(1 in y) == true; // use 'in' to test if an element exists in the array
(42 in y) == false; // 'in' uses the 'contains' function, which uses the
// '==' operator (that users can override)
// to check if the target element exists in the array
y.contains(1) == true; // the above de-sugars to this
y[1] = 42; // y == [1, 42, 3, 4]
(42 in y) == true;
y.remove(2) == 3; // y == [1, 42, 4]
y.len == 3;
y[2] == 4; // elements after the removed element are shifted
ts.list = y; // arrays can be assigned completely (by value copy)
ts.list[1] == 42;
[1, 2, 3][0] == 1; // indexing on array literal
[1, 2, 3][-1] == 3; // negative position counts from the end
fn abc() {
[42, 43, 44] // a function returning an array
}
abc()[0] == 42;
y.push(4); // y == [1, 42, 4, 4]
y += 5; // y == [1, 42, 4, 4, 5]
y.len == 5;
y.shift() == 1; // y == [42, 4, 4, 5]
y.chop(3); // y == [4, 4, 5]
y.len == 3;
y.pop() == 5; // y == [4, 4]
y.len == 2;
for element in y { // arrays can be iterated with a 'for' statement
print(element);
}
y.pad(6, "hello"); // y == [4, 4, "hello", "hello", "hello", "hello"]
y.len == 6;
y.truncate(4); // y == [4, 4, "hello", "hello"]
y.len == 4;
y.clear(); // y == []
y.len == 0;
// The examples below use 'a' as the master array
let a = [42, 123, 99];
a.for_each(|| this *= 2);
a == [84, 246, 198];
a.for_each(|i| this /= 2);
a == [42, 123, 99];
a.map(|v| v + 1); // returns [43, 124, 100]
a.map(|| this + 1); // returns [43, 124, 100]
a.map(|v, i| v + i); // returns [42, 124, 101]
a.filter(|v| v > 50); // returns [123, 99]
a.filter(|| this > 50); // returns [123, 99]
a.filter(|v, i| i == 1); // returns [123]
a.filter("is_odd"); // returns [123, 99]
a.filter(Fn("is_odd")); // <- previous statement is equivalent to this...
a.filter(|v| is_odd(v)); // <- or this
a.some(|v| v > 50); // returns true
a.some(|| this > 50); // returns true
a.some(|v, i| v < i); // returns false
a.all(|v| v > 50); // returns false
a.all(|| this > 50); // returns false
a.all(|v, i| v > i); // returns true
// Reducing - initial value provided directly
a.reduce(|sum| sum + this, 0) == 264;
// Reducing - initial value provided directly
a.reduce(|sum, v| sum + v, 0) == 264;
// Reducing - initial value is '()'
a.reduce(
|sum, v| if sum.type_of() == "()" { v } else { sum + v }
) == 264;
// Reducing - initial value has index position == 0
a.reduce(|sum, v, i|
if i == 0 { v } else { sum + v }
) == 264;
// Reducing in reverse - initial value provided directly
a.reduce_rev(|sum| sum + this, 0) == 264;
// Reducing in reverse - initial value provided directly
a.reduce_rev(|sum, v| sum + v, 0) == 264;
// Reducing in reverse - initial value is '()'
a.reduce_rev(
|sum, v| if sum.type_of() == "()" { v } else { sum + v }
) == 264;
// Reducing in reverse - initial value has index position == 0
a.reduce_rev(|sum, v, i|
if i == 2 { v } else { sum + v }
) == 264;
// In-place modification
a.splice(1..=1, [1, 3, 2]); // a == [42, 1, 3, 2, 99]
a.extract(1..=3); // returns [1, 3, 2]
a.sort(|x, y| y - x); // a == [99, 42, 3, 2, 1]
a.sort(); // a == [1, 2, 3, 42, 99]
a.drain(|v| v <= 1); // a == [2, 3, 42, 99]
a.drain(|v, i| i ≥ 3); // a == [2, 3, 42]
a.retain(|v| v > 10); // a == [42]
a.retain(|v, i| i > 0); // a == []