Files
herodb/docs/local_embedder_full_example.md

988 lines
20 KiB
Markdown

# HeroDB Embedding Models: Complete Tutorial
This tutorial demonstrates how to use embedding models with HeroDB for vector search, covering both local self-hosted models and OpenAI's API.
## Table of Contents
- [Prerequisites](#prerequisites)
- [Scenario 1: Local Embedding Model](#scenario-1-local-embedding-model-testing)
- [Scenario 2: OpenAI API](#scenario-2-openai-api)
- [Scenario 3: Deterministic Test Embedder](#scenario-3-deterministic-test-embedder-no-network)
- [Troubleshooting](#troubleshooting)
---
## Prerequisites
### Start HeroDB Server
Build and start HeroDB with RPC enabled:
```bash
cargo build --release
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
```
This starts:
- Redis-compatible server on port 6379
- JSON-RPC server on port 8080
### Client Tools
For Redis-like commands:
```bash
redis-cli -p 6379
```
For JSON-RPC calls, use `curl`:
```bash
curl -X POST http://localhost:8080 \
-H "Content-Type: application/json" \
-d '{"jsonrpc":"2.0","id":1,"method":"herodb_METHOD","params":[...]}'
```
---
## Scenario 1: Local Embedding Model (Testing)
Run your own embedding service locally for development, testing, or privacy.
### Option A: Python Mock Server (Simplest)
This creates a minimal OpenAI-compatible embedding server for testing.
**1. Create `mock_embedder.py`:**
```python
from flask import Flask, request, jsonify
import numpy as np
app = Flask(__name__)
@app.route('/v1/embeddings', methods=['POST'])
def embeddings():
"""OpenAI-compatible embeddings endpoint"""
data = request.json
inputs = data.get('input', [])
# Handle both single string and array
if isinstance(inputs, str):
inputs = [inputs]
# Generate deterministic 768-dim embeddings (hash-based)
embeddings = []
for text in inputs:
# Simple hash to vector (deterministic)
vec = np.zeros(768)
for i, char in enumerate(text[:768]):
vec[i % 768] += ord(char) / 255.0
# L2 normalize
norm = np.linalg.norm(vec)
if norm > 0:
vec = vec / norm
embeddings.append(vec.tolist())
return jsonify({
"data": [{"embedding": emb, "index": i} for i, emb in enumerate(embeddings)],
"model": data.get('model', 'mock-local'),
"usage": {"total_tokens": sum(len(t) for t in inputs)}
})
if __name__ == '__main__':
print("Starting mock embedding server on http://127.0.0.1:8081")
app.run(host='127.0.0.1', port=8081, debug=False)
```
**2. Install dependencies and run:**
```bash
pip install flask numpy
python mock_embedder.py
```
Output: `Starting mock embedding server on http://127.0.0.1:8081`
**3. Test the server (optional):**
```bash
curl -X POST http://127.0.0.1:8081/v1/embeddings \
-H "Content-Type: application/json" \
-d '{"input":["hello world"],"model":"test"}'
```
You should see a JSON response with a 768-dimensional embedding.
### End-to-End Example with Local Model
**Step 1: Create a Lance database**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_createDatabase",
"params": [
"Lance",
{ "name": "local-vectors", "storage_path": null, "max_size": null, "redis_version": null },
null
]
}
```
Expected response:
```json
{"jsonrpc":"2.0","id":1,"result":1}
```
The database ID is `1`.
**Step 2: Configure embedding for the dataset**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 2,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"products",
{
"provider": "openai",
"model": "mock-local",
"dim": 768,
"endpoint": "http://127.0.0.1:8081/v1/embeddings",
"headers": {
"Authorization": "Bearer dummy"
},
"timeout_ms": 30000
}
]
}
```
Redis-like:
```bash
redis-cli -p 6379
SELECT 1
LANCE.EMBEDDING CONFIG SET products PROVIDER openai MODEL mock-local DIM 768 ENDPOINT http://127.0.0.1:8081/v1/embeddings HEADER Authorization "Bearer dummy" TIMEOUTMS 30000
```
Expected response:
```json
{"jsonrpc":"2.0","id":2,"result":true}
```
**Step 3: Verify configuration**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 3,
"method": "herodb_lanceGetEmbeddingConfig",
"params": [1, "products"]
}
```
Redis-like:
```bash
LANCE.EMBEDDING CONFIG GET products
```
Expected: Returns your configuration with provider, model, dim, endpoint, etc.
**Step 4: Insert product data**
JSON-RPC (item 1):
```json
{
"jsonrpc": "2.0",
"id": 4,
"method": "herodb_lanceStoreText",
"params": [
1,
"products",
"item-1",
"Waterproof hiking boots with ankle support and aggressive tread",
{ "brand": "TrailMax", "category": "footwear", "price": "129.99" }
]
}
```
Redis-like:
```bash
LANCE.STORE products ID item-1 TEXT "Waterproof hiking boots with ankle support and aggressive tread" META brand TrailMax category footwear price 129.99
```
JSON-RPC (item 2):
```json
{
"jsonrpc": "2.0",
"id": 5,
"method": "herodb_lanceStoreText",
"params": [
1,
"products",
"item-2",
"Lightweight running shoes with breathable mesh upper",
{ "brand": "SpeedFit", "category": "footwear", "price": "89.99" }
]
}
```
JSON-RPC (item 3):
```json
{
"jsonrpc": "2.0",
"id": 6,
"method": "herodb_lanceStoreText",
"params": [
1,
"products",
"item-3",
"Insulated winter jacket with removable hood and multiple pockets",
{ "brand": "WarmTech", "category": "outerwear", "price": "199.99" }
]
}
```
JSON-RPC (item 4):
```json
{
"jsonrpc": "2.0",
"id": 7,
"method": "herodb_lanceStoreText",
"params": [
1,
"products",
"item-4",
"Camping tent for 4 people with waterproof rainfly",
{ "brand": "OutdoorPro", "category": "camping", "price": "249.99" }
]
}
```
Expected response for each: `{"jsonrpc":"2.0","id":N,"result":true}`
**Step 5: Search by text query**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 8,
"method": "herodb_lanceSearchText",
"params": [
1,
"products",
"boots for hiking in wet conditions",
3,
null,
["brand", "category", "price"]
]
}
```
Redis-like:
```bash
LANCE.SEARCH products K 3 QUERY "boots for hiking in wet conditions" RETURN 3 brand category price
```
Expected response:
```json
{
"jsonrpc": "2.0",
"id": 8,
"result": {
"results": [
{
"id": "item-1",
"score": 0.234,
"meta": {
"brand": "TrailMax",
"category": "footwear",
"price": "129.99"
}
},
...
]
}
}
```
**Step 6: Search with metadata filter**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 9,
"method": "herodb_lanceSearchText",
"params": [
1,
"products",
"comfortable shoes for running",
5,
"category = 'footwear'",
null
]
}
```
Redis-like:
```bash
LANCE.SEARCH products K 5 QUERY "comfortable shoes for running" FILTER "category = 'footwear'"
```
This returns only items where `category` equals `'footwear'`.
**Step 7: List datasets**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 10,
"method": "herodb_lanceList",
"params": [1]
}
```
Redis-like:
```bash
LANCE.LIST
```
**Step 8: Get dataset info**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 11,
"method": "herodb_lanceInfo",
"params": [1, "products"]
}
```
Redis-like:
```bash
LANCE.INFO products
```
Returns dimension, row count, and other metadata.
---
## Scenario 2: OpenAI API
Use OpenAI's production embedding service for semantic search.
### Setup
**1. Set your API key:**
```bash
export OPENAI_API_KEY="sk-your-actual-openai-key-here"
```
**2. Start HeroDB** (same as before):
```bash
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
```
### End-to-End Example with OpenAI
**Step 1: Create a Lance database**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_createDatabase",
"params": [
"Lance",
{ "name": "openai-vectors", "storage_path": null, "max_size": null, "redis_version": null },
null
]
}
```
Expected: `{"jsonrpc":"2.0","id":1,"result":1}` (database ID = 1)
**Step 2: Configure OpenAI embeddings**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 2,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"documents",
{
"provider": "openai",
"model": "text-embedding-3-small",
"dim": 1536,
"endpoint": null,
"headers": {},
"timeout_ms": 30000
}
]
}
```
Redis-like:
```bash
redis-cli -p 6379
SELECT 1
LANCE.EMBEDDING CONFIG SET documents PROVIDER openai MODEL text-embedding-3-small DIM 1536 TIMEOUTMS 30000
```
Notes:
- `endpoint` is `null` (defaults to OpenAI API: https://api.openai.com/v1/embeddings)
- `headers` is empty (Authorization auto-added from OPENAI_API_KEY env var)
- `dim` is 1536 for text-embedding-3-small
Expected: `{"jsonrpc":"2.0","id":2,"result":true}`
**Step 3: Insert documents**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 3,
"method": "herodb_lanceStoreText",
"params": [
1,
"documents",
"doc-1",
"The quick brown fox jumps over the lazy dog",
{ "source": "example", "lang": "en", "topic": "animals" }
]
}
```
```json
{
"jsonrpc": "2.0",
"id": 4,
"method": "herodb_lanceStoreText",
"params": [
1,
"documents",
"doc-2",
"Machine learning models require large datasets for training and validation",
{ "source": "tech", "lang": "en", "topic": "ai" }
]
}
```
```json
{
"jsonrpc": "2.0",
"id": 5,
"method": "herodb_lanceStoreText",
"params": [
1,
"documents",
"doc-3",
"Python is a popular programming language for data science and web development",
{ "source": "tech", "lang": "en", "topic": "programming" }
]
}
```
Redis-like:
```bash
LANCE.STORE documents ID doc-1 TEXT "The quick brown fox jumps over the lazy dog" META source example lang en topic animals
LANCE.STORE documents ID doc-2 TEXT "Machine learning models require large datasets for training and validation" META source tech lang en topic ai
LANCE.STORE documents ID doc-3 TEXT "Python is a popular programming language for data science and web development" META source tech lang en topic programming
```
Expected for each: `{"jsonrpc":"2.0","id":N,"result":true}`
**Step 4: Semantic search**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 6,
"method": "herodb_lanceSearchText",
"params": [
1,
"documents",
"artificial intelligence and neural networks",
3,
null,
["source", "topic"]
]
}
```
Redis-like:
```bash
LANCE.SEARCH documents K 3 QUERY "artificial intelligence and neural networks" RETURN 2 source topic
```
Expected response (doc-2 should rank highest due to semantic similarity):
```json
{
"jsonrpc": "2.0",
"id": 6,
"result": {
"results": [
{
"id": "doc-2",
"score": 0.123,
"meta": {
"source": "tech",
"topic": "ai"
}
},
{
"id": "doc-3",
"score": 0.456,
"meta": {
"source": "tech",
"topic": "programming"
}
},
{
"id": "doc-1",
"score": 0.789,
"meta": {
"source": "example",
"topic": "animals"
}
}
]
}
}
```
Note: Lower score = better match (L2 distance).
**Step 5: Search with filter**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 7,
"method": "herodb_lanceSearchText",
"params": [
1,
"documents",
"programming and software",
5,
"topic = 'programming'",
null
]
}
```
Redis-like:
```bash
LANCE.SEARCH documents K 5 QUERY "programming and software" FILTER "topic = 'programming'"
```
This returns only documents where `topic` equals `'programming'`.
---
## Scenario 2: OpenAI API
Use OpenAI's production embedding service for high-quality semantic search.
### Setup
**1. Set your OpenAI API key:**
```bash
export OPENAI_API_KEY="sk-your-actual-openai-key-here"
```
**2. Start HeroDB:**
```bash
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
```
### Complete Workflow
**Step 1: Create database**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_createDatabase",
"params": [
"Lance",
{ "name": "openai-docs", "storage_path": null, "max_size": null, "redis_version": null },
null
]
}
```
**Step 2: Configure OpenAI embeddings**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 2,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"articles",
{
"provider": "openai",
"model": "text-embedding-3-small",
"dim": 1536,
"endpoint": null,
"headers": {},
"timeout_ms": 30000
}
]
}
```
Redis-like:
```bash
SELECT 1
LANCE.EMBEDDING CONFIG SET articles PROVIDER openai MODEL text-embedding-3-small DIM 1536
```
**Step 3: Insert articles**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 3,
"method": "herodb_lanceStoreText",
"params": [
1,
"articles",
"article-1",
"Climate change is affecting global weather patterns and ecosystems",
{ "category": "environment", "author": "Jane Smith", "year": "2024" }
]
}
```
```json
{
"jsonrpc": "2.0",
"id": 4,
"method": "herodb_lanceStoreText",
"params": [
1,
"articles",
"article-2",
"Quantum computing promises to revolutionize cryptography and drug discovery",
{ "category": "technology", "author": "John Doe", "year": "2024" }
]
}
```
```json
{
"jsonrpc": "2.0",
"id": 5,
"method": "herodb_lanceStoreText",
"params": [
1,
"articles",
"article-3",
"Renewable energy sources like solar and wind are becoming more cost-effective",
{ "category": "environment", "author": "Alice Johnson", "year": "2023" }
]
}
```
**Step 4: Semantic search**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 6,
"method": "herodb_lanceSearchText",
"params": [
1,
"articles",
"environmental sustainability and green energy",
2,
null,
["category", "author"]
]
}
```
Redis-like:
```bash
LANCE.SEARCH articles K 2 QUERY "environmental sustainability and green energy" RETURN 2 category author
```
Expected: Returns article-1 and article-3 (both environment-related).
**Step 5: Filtered search**
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 7,
"method": "herodb_lanceSearchText",
"params": [
1,
"articles",
"new technology innovations",
5,
"category = 'technology'",
null
]
}
```
---
## Scenario 3: Deterministic Test Embedder (No Network)
For CI/offline development, use the built-in test embedder that requires no external service.
### Configuration
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"testdata",
{
"provider": "test",
"model": "dev",
"dim": 64,
"endpoint": null,
"headers": {},
"timeout_ms": null
}
]
}
```
Redis-like:
```bash
SELECT 1
LANCE.EMBEDDING CONFIG SET testdata PROVIDER test MODEL dev DIM 64
```
### Usage
Use `lanceStoreText` and `lanceSearchText` as in previous scenarios. The embeddings are:
- Deterministic (same text → same vector)
- Fast (no network)
- Not semantic (hash-based, not ML)
Perfect for testing the vector storage/search mechanics without external dependencies.
---
## Advanced: Custom Headers and Timeouts
### Example: Local model with custom auth
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"secure-data",
{
"provider": "openai",
"model": "custom-model",
"dim": 512,
"endpoint": "http://192.168.1.100:9000/embeddings",
"headers": {
"Authorization": "Bearer my-local-token",
"X-Custom-Header": "value"
},
"timeout_ms": 60000
}
]
}
```
### Example: OpenAI with explicit API key (not from env)
JSON-RPC:
```json
{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [
1,
"dataset",
{
"provider": "openai",
"model": "text-embedding-3-small",
"dim": 1536,
"endpoint": null,
"headers": {
"Authorization": "Bearer sk-your-key-here"
},
"timeout_ms": 30000
}
]
}
```
---
## Troubleshooting
### Error: "Embedding config not set for dataset"
**Cause:** You tried to use `lanceStoreText` or `lanceSearchText` without configuring an embedder.
**Solution:** Run `lanceSetEmbeddingConfig` first.
### Error: "Embedding dimension mismatch: expected X, got Y"
**Cause:** The embedding service returned vectors of a different size than configured.
**Solution:**
- For OpenAI text-embedding-3-small, use `dim: 1536`
- For your local mock (from this tutorial), use `dim: 768`
- Check your embedding service's actual output dimension
### Error: "Missing API key in env 'OPENAI_API_KEY'"
**Cause:** Using OpenAI provider without setting the API key.
**Solution:**
- Set `export OPENAI_API_KEY="sk-..."` before starting HeroDB, OR
- Pass the key explicitly in headers: `"Authorization": "Bearer sk-..."`
### Error: "HTTP request failed" or "Embeddings API error 404"
**Cause:** Cannot reach the embedding endpoint.
**Solution:**
- Verify your local server is running: `curl http://127.0.0.1:8081/v1/embeddings`
- Check the endpoint URL in your config
- Ensure firewall allows the connection
### Error: "ERR DB backend is not Lance"
**Cause:** Trying to use LANCE.* commands on a non-Lance database.
**Solution:** Create the database with backend "Lance" (see Step 1).
### Error: "write permission denied"
**Cause:** Database is private and you haven't authenticated.
**Solution:** Use `SELECT <db_id> KEY <access-key>` or make the database public via RPC.
---
## Complete Example Script (Bash + curl)
Save as `test_embeddings.sh`:
```bash
#!/bin/bash
RPC_URL="http://localhost:8080"
# 1. Create Lance database
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
"jsonrpc": "2.0",
"id": 1,
"method": "herodb_createDatabase",
"params": ["Lance", {"name": "test-vectors", "storage_path": null, "max_size": null, "redis_version": null}, null]
}'
echo -e "\n"
# 2. Configure local embedder
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
"jsonrpc": "2.0",
"id": 2,
"method": "herodb_lanceSetEmbeddingConfig",
"params": [1, "products", {
"provider": "openai",
"model": "mock",
"dim": 768,
"endpoint": "http://127.0.0.1:8081/v1/embeddings",
"headers": {"Authorization": "Bearer dummy"},
"timeout_ms": 30000
}]
}'
echo -e "\n"
# 3. Insert data
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
"jsonrpc": "2.0",
"id": 3,
"method": "herodb_lanceStoreText",
"params": [1, "products", "item-1", "Hiking boots", {"brand": "TrailMax"}]
}'
echo -e "\n"
# 4. Search
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
"jsonrpc": "2.0",
"id": 4,
"method": "herodb_lanceSearchText",
"params": [1, "products", "outdoor footwear", 5, null, null]
}'
echo -e "\n"
```
Run:
```bash
chmod +x test_embeddings.sh
./test_embeddings.sh
```
---
## Summary
| Provider | Use Case | Endpoint | API Key |
|----------|----------|----------|---------|
| `openai` | Production semantic search | Default (OpenAI) or custom URL | OPENAI_API_KEY env or headers |
| `openai` | Local self-hosted gateway | http://127.0.0.1:8081/... | Optional (depends on your service) |
| `test` | CI/offline development | N/A (local hash) | None |
| `image_test` | Image testing | N/A (local hash) | None |
**Notes:**
- The `provider` field is always `"openai"` for OpenAI-compatible services (whether cloud or local). This is because it uses the OpenAI-compatible API shape.
- Use `endpoint` to point to your local service
- Use `headers` for custom authentication
- `dim` must match your embedding service's output dimension
- Once configured, `lanceStoreText` and `lanceSearchText` handle embedding automatically