Files
herodb/docs/lancedb_text_and_images_example.md

4.4 KiB

LanceDB Text and Images: End-to-End Example

This guide demonstrates creating a Lance backend database, ingesting two text documents and two images, performing searches over both, and cleaning up the datasets.

Prerequisites

  • Build HeroDB and start the server with JSON-RPC enabled. Commands:
cargo build --release
./target/release/herodb --dir /tmp/herodb --admin-secret mysecret --port 6379 --enable-rpc

We'll use:

  • redis-cli for RESP commands against port 6379
  • curl for JSON-RPC against 8080 if desired
  • Deterministic local embedders to avoid external dependencies: testhash (text, dim 64) and testimagehash (image, dim 512)
  1. Create a Lance-backed database (JSON-RPC) Request:
{ "jsonrpc": "2.0", "id": 1, "method": "herodb_createDatabase", "params": ["Lance", { "name": "media-db", "storage_path": null, "max_size": null, "redis_version": null }, null] }

Response returns db_id (assume 1). Select DB over RESP:

redis-cli -p 6379 SELECT 1
# → OK
  1. Configure embedding providers We'll create two datasets with independent embedding configs:
  • textset → provider testhash, dim 64
  • imageset → provider testimagehash, dim 512

Text config:

redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET textset PROVIDER testhash MODEL any PARAM dim 64
# → OK

Image config:

redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET imageset PROVIDER testimagehash MODEL any PARAM dim 512
# → OK
  1. Create datasets
redis-cli -p 6379 LANCE.CREATE textset DIM 64
# → OK
redis-cli -p 6379 LANCE.CREATE imageset DIM 512
# → OK
  1. Ingest two text documents (server-side embedding)
redis-cli -p 6379 LANCE.STORE textset ID doc-1 TEXT "The quick brown fox jumps over the lazy dog" META title "Fox" category "animal"
# → OK
redis-cli -p 6379 LANCE.STORE textset ID doc-2 TEXT "A fast auburn fox vaulted a sleepy canine" META title "Paraphrase" category "animal"
# → OK
  1. Ingest two images You can provide a URI or base64 bytes. Use URI for URIs, BYTES for base64 data. Example using free placeholder images:
# Store via URI
redis-cli -p 6379 LANCE.STOREIMAGE imageset ID img-1 URI "https://picsum.photos/seed/1/256/256" META title "Seed1" group "demo"
# → OK
redis-cli -p 6379 LANCE.STOREIMAGE imageset ID img-2 URI "https://picsum.photos/seed/2/256/256" META title "Seed2" group "demo"
# → OK

If your environment blocks outbound HTTP, you can embed image bytes:

# Example: read a local file and base64 it (replace path)
b64=$(base64 -w0 ./image1.png)
redis-cli -p 6379 LANCE.STOREIMAGE imageset ID img-b64-1 BYTES "$b64" META title "Local1" group "demo"
  1. Search text
# Top-2 nearest neighbors for a query
redis-cli -p 6379 LANCE.SEARCH textset K 2 QUERY "quick brown fox" RETURN 1 title
# → 1) [id, score, [k1,v1,...]]

With a filter (supports equality on schema or meta keys):

redis-cli -p 6379 LANCE.SEARCH textset K 2 QUERY "fox jumps" FILTER "category = 'animal'" RETURN 1 title
  1. Search images
# Provide a URI as the query
redis-cli -p 6379 LANCE.SEARCHIMAGE imageset K 2 QUERYURI "https://picsum.photos/seed/1/256/256" RETURN 1 title

# Or provide base64 bytes as the query
qb64=$(curl -s https://picsum.photos/seed/3/256/256 | base64 -w0)
redis-cli -p 6379 LANCE.SEARCHIMAGE imageset K 2 QUERYBYTES "$qb64" RETURN 1 title
  1. Inspect datasets
redis-cli -p 6379 LANCE.LIST
redis-cli -p 6379 LANCE.INFO textset
redis-cli -p 6379 LANCE.INFO imageset
  1. Delete by id and drop datasets
# Delete one record
redis-cli -p 6379 LANCE.DEL textset doc-2
# → OK

# Drop entire datasets
redis-cli -p 6379 LANCE.DROP textset
redis-cli -p 6379 LANCE.DROP imageset
# → OK

Appendix: Using OpenAI embeddings instead of test providers Text:

export OPENAI_API_KEY=sk-...
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET textset PROVIDER openai MODEL text-embedding-3-small PARAM dim 512
redis-cli -p 6379 LANCE.CREATE textset DIM 512

Azure OpenAI:

export AZURE_OPENAI_API_KEY=...
redis-cli -p 6379 LANCE.EMBEDDING CONFIG SET textset PROVIDER openai MODEL text-embedding-3-small \
  PARAM use_azure true \
  PARAM azure_endpoint https://myresource.openai.azure.com \
  PARAM azure_deployment my-embed-deploy \
  PARAM azure_api_version 2024-02-15 \
  PARAM dim 512

Notes:

  • Ensure dataset DIM matches the configured embedding dimension.
  • Lance is only available for non-admin databases (db_id >= 1).
  • On Lance DBs, only LANCE.* and basic control commands are allowed.