17 KiB
		
	
	
	
	
	
	
	
			
		
		
	
	HeroDB Embedding Models: Complete Tutorial
This tutorial demonstrates how to use embedding models with HeroDB for vector search, covering local self-hosted models, OpenAI's API, and deterministic test embedders.
Table of Contents
- Prerequisites
- Scenario 1: Local Embedding Model
- Scenario 2: OpenAI API
- Scenario 3: Deterministic Test Embedder
- Troubleshooting
Prerequisites
Start HeroDB Server
Build and start HeroDB with RPC enabled:
cargo build --release
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
This starts:
- Redis-compatible server on port 6379
- JSON-RPC server on port 8080
Client Tools
For Redis-like commands:
redis-cli -p 6379
For JSON-RPC calls, use curl:
curl -X POST http://localhost:8080 \
  -H "Content-Type: application/json" \
  -d '{"jsonrpc":"2.0","id":1,"method":"herodb_METHOD","params":[...]}'
Scenario 1: Local Embedding Model (Testing)
Run your own embedding service locally for development, testing, or privacy.
Option A: Python Mock Server (Simplest)
This creates a minimal OpenAI-compatible embedding server for testing.
1. Create mock_embedder.py:
from flask import Flask, request, jsonify
import numpy as np
app = Flask(__name__)
@app.route('/v1/embeddings', methods=['POST'])
def embeddings():
    """OpenAI-compatible embeddings endpoint"""
    data = request.json
    inputs = data.get('input', [])
    
    # Handle both single string and array
    if isinstance(inputs, str):
        inputs = [inputs]
    
    # Generate deterministic 768-dim embeddings (hash-based)
    embeddings = []
    for text in inputs:
        # Simple hash to vector (deterministic)
        vec = np.zeros(768)
        for i, char in enumerate(text[:768]):
            vec[i % 768] += ord(char) / 255.0
        
        # L2 normalize
        norm = np.linalg.norm(vec)
        if norm > 0:
            vec = vec / norm
        
        embeddings.append(vec.tolist())
    
    return jsonify({
        "data": [{"embedding": emb, "index": i} for i, emb in enumerate(embeddings)],
        "model": data.get('model', 'mock-local'),
        "usage": {"total_tokens": sum(len(t) for t in inputs)}
    })
if __name__ == '__main__':
    print("Starting mock embedding server on http://127.0.0.1:8081")
    app.run(host='127.0.0.1', port=8081, debug=False)
2. Install dependencies and run:
pip install flask numpy
python mock_embedder.py
Output: Starting mock embedding server on http://127.0.0.1:8081
3. Test the server (optional):
curl -X POST http://127.0.0.1:8081/v1/embeddings \
  -H "Content-Type: application/json" \
  -d '{"input":["hello world"],"model":"test"}'
You should see a JSON response with a 768-dimensional embedding.
End-to-End Example with Local Model
Step 1: Create a Lance database
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "herodb_createDatabase",
  "params": [
    "Lance",
    { "name": "local-vectors", "storage_path": null, "max_size": null, "redis_version": null },
    null
  ]
}
Expected response:
{"jsonrpc":"2.0","id":1,"result":1}
The database ID is 1.
Step 2: Configure embedding for the dataset
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "herodb_lanceSetEmbeddingConfig",
  "params": [
    1,
    "products",
    {
      "provider": "openai",
      "model": "mock-local",
      "dim": 768,
      "endpoint": "http://127.0.0.1:8081/v1/embeddings",
      "headers": {
        "Authorization": "Bearer dummy"
      },
      "timeout_ms": 30000
    }
  ]
}
Redis-like:
redis-cli -p 6379
SELECT 1
LANCE.EMBEDDING CONFIG SET products PROVIDER openai MODEL mock-local DIM 768 ENDPOINT http://127.0.0.1:8081/v1/embeddings HEADER Authorization "Bearer dummy" TIMEOUTMS 30000
Expected response:
{"jsonrpc":"2.0","id":2,"result":true}
Step 3: Verify configuration
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "herodb_lanceGetEmbeddingConfig",
  "params": [1, "products"]
}
Redis-like:
LANCE.EMBEDDING CONFIG GET products
Expected: Returns your configuration with provider, model, dim, endpoint, etc.
Step 4: Insert product data
JSON-RPC (item 1):
{
  "jsonrpc": "2.0",
  "id": 4,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "products",
    "item-1",
    "Waterproof hiking boots with ankle support and aggressive tread",
    { "brand": "TrailMax", "category": "footwear", "price": "129.99" }
  ]
}
Redis-like:
LANCE.STORE products ID item-1 TEXT "Waterproof hiking boots with ankle support and aggressive tread" META brand TrailMax category footwear price 129.99
JSON-RPC (item 2):
{
  "jsonrpc": "2.0",
  "id": 5,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "products",
    "item-2",
    "Lightweight running shoes with breathable mesh upper",
    { "brand": "SpeedFit", "category": "footwear", "price": "89.99" }
  ]
}
JSON-RPC (item 3):
{
  "jsonrpc": "2.0",
  "id": 6,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "products",
    "item-3",
    "Insulated winter jacket with removable hood and multiple pockets",
    { "brand": "WarmTech", "category": "outerwear", "price": "199.99" }
  ]
}
JSON-RPC (item 4):
{
  "jsonrpc": "2.0",
  "id": 7,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "products",
    "item-4",
    "Camping tent for 4 people with waterproof rainfly",
    { "brand": "OutdoorPro", "category": "camping", "price": "249.99" }
  ]
}
Expected response for each: {"jsonrpc":"2.0","id":N,"result":true}
Step 5: Search by text query
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 8,
  "method": "herodb_lanceSearchText",
  "params": [
    1,
    "products",
    "boots for hiking in wet conditions",
    3,
    null,
    ["brand", "category", "price"]
  ]
}
Redis-like:
LANCE.SEARCH products K 3 QUERY "boots for hiking in wet conditions" RETURN 3 brand category price
Expected response:
{
  "jsonrpc": "2.0",
  "id": 8,
  "result": {
    "results": [
      {
        "id": "item-1",
        "score": 0.234,
        "meta": {
          "brand": "TrailMax",
          "category": "footwear",
          "price": "129.99"
        }
      },
      ...
    ]
  }
}
Step 6: Search with metadata filter
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 9,
  "method": "herodb_lanceSearchText",
  "params": [
    1,
    "products",
    "comfortable shoes for running",
    5,
    "category = 'footwear'",
    null
  ]
}
Redis-like:
LANCE.SEARCH products K 5 QUERY "comfortable shoes for running" FILTER "category = 'footwear'"
This returns only items where category equals 'footwear'.
Step 7: List datasets
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 10,
  "method": "herodb_lanceList",
  "params": [1]
}
Redis-like:
LANCE.LIST
Step 8: Get dataset info
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 11,
  "method": "herodb_lanceInfo",
  "params": [1, "products"]
}
Redis-like:
LANCE.INFO products
Returns dimension, row count, and other metadata.
Scenario 2: OpenAI API
Use OpenAI's production embedding service for semantic search.
Setup
1. Set your API key:
export OPENAI_API_KEY="sk-your-actual-openai-key-here"
2. Start HeroDB (same as before):
./target/release/herodb --dir ./data --admin-secret my-admin-secret --enable-rpc --rpc-port 8080
End-to-End Example with OpenAI
Step 1: Create a Lance database
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "herodb_createDatabase",
  "params": [
    "Lance",
    { "name": "openai-vectors", "storage_path": null, "max_size": null, "redis_version": null },
    null
  ]
}
Expected: {"jsonrpc":"2.0","id":1,"result":1} (database ID = 1)
Step 2: Configure OpenAI embeddings
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "herodb_lanceSetEmbeddingConfig",
  "params": [
    1,
    "documents",
    {
      "provider": "openai",
      "model": "text-embedding-3-small",
      "dim": 1536,
      "endpoint": null,
      "headers": {},
      "timeout_ms": 30000
    }
  ]
}
Redis-like:
redis-cli -p 6379
SELECT 1
LANCE.EMBEDDING CONFIG SET documents PROVIDER openai MODEL text-embedding-3-small DIM 1536 TIMEOUTMS 30000
Notes:
- endpointis- null(defaults to OpenAI API: https://api.openai.com/v1/embeddings)
- headersis empty (Authorization auto-added from OPENAI_API_KEY env var)
- dimis 1536 for text-embedding-3-small
Expected: {"jsonrpc":"2.0","id":2,"result":true}
Step 3: Insert documents
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "documents",
    "doc-1",
    "The quick brown fox jumps over the lazy dog",
    { "source": "example", "lang": "en", "topic": "animals" }
  ]
}
{
  "jsonrpc": "2.0",
  "id": 4,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "documents",
    "doc-2",
    "Machine learning models require large datasets for training and validation",
    { "source": "tech", "lang": "en", "topic": "ai" }
  ]
}
{
  "jsonrpc": "2.0",
  "id": 5,
  "method": "herodb_lanceStoreText",
  "params": [
    1,
    "documents",
    "doc-3",
    "Python is a popular programming language for data science and web development",
    { "source": "tech", "lang": "en", "topic": "programming" }
  ]
}
Redis-like:
LANCE.STORE documents ID doc-1 TEXT "The quick brown fox jumps over the lazy dog" META source example lang en topic animals
LANCE.STORE documents ID doc-2 TEXT "Machine learning models require large datasets for training and validation" META source tech lang en topic ai
LANCE.STORE documents ID doc-3 TEXT "Python is a popular programming language for data science and web development" META source tech lang en topic programming
Expected for each: {"jsonrpc":"2.0","id":N,"result":true}
Step 4: Semantic search
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 6,
  "method": "herodb_lanceSearchText",
  "params": [
    1,
    "documents",
    "artificial intelligence and neural networks",
    3,
    null,
    ["source", "topic"]
  ]
}
Redis-like:
LANCE.SEARCH documents K 3 QUERY "artificial intelligence and neural networks" RETURN 2 source topic
Expected response (doc-2 should rank highest due to semantic similarity):
{
  "jsonrpc": "2.0",
  "id": 6,
  "result": {
    "results": [
      {
        "id": "doc-2",
        "score": 0.123,
        "meta": {
          "source": "tech",
          "topic": "ai"
        }
      },
      {
        "id": "doc-3",
        "score": 0.456,
        "meta": {
          "source": "tech",
          "topic": "programming"
        }
      },
      {
        "id": "doc-1",
        "score": 0.789,
        "meta": {
          "source": "example",
          "topic": "animals"
        }
      }
    ]
  }
}
Note: Lower score = better match (L2 distance).
Step 5: Search with filter
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 7,
  "method": "herodb_lanceSearchText",
  "params": [
    1,
    "documents",
    "programming and software",
    5,
    "topic = 'programming'",
    null
  ]
}
Redis-like:
LANCE.SEARCH documents K 5 QUERY "programming and software" FILTER "topic = 'programming'"
This returns only documents where topic equals 'programming'.
Scenario 3: Deterministic Test Embedder (No Network)
For CI/offline development, use the built-in test embedder that requires no external service.
Configuration
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "herodb_lanceSetEmbeddingConfig",
  "params": [
    1,
    "testdata",
    {
      "provider": "test",
      "model": "dev",
      "dim": 64,
      "endpoint": null,
      "headers": {},
      "timeout_ms": null
    }
  ]
}
Redis-like:
SELECT 1
LANCE.EMBEDDING CONFIG SET testdata PROVIDER test MODEL dev DIM 64
Usage
Use lanceStoreText and lanceSearchText as in previous scenarios. The embeddings are:
- Deterministic (same text → same vector)
- Fast (no network)
- Not semantic (hash-based, not ML)
Perfect for testing the vector storage/search mechanics without external dependencies.
Advanced: Custom Headers and Timeouts
Example: Local model with custom auth
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "herodb_lanceSetEmbeddingConfig",
  "params": [
    1,
    "secure-data",
    {
      "provider": "openai",
      "model": "custom-model",
      "dim": 512,
      "endpoint": "http://192.168.1.100:9000/embeddings",
      "headers": {
        "Authorization": "Bearer my-local-token",
        "X-Custom-Header": "value"
      },
      "timeout_ms": 60000
    }
  ]
}
Example: OpenAI with explicit API key (not from env)
JSON-RPC:
{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "herodb_lanceSetEmbeddingConfig",
  "params": [
    1,
    "dataset",
    {
      "provider": "openai",
      "model": "text-embedding-3-small",
      "dim": 1536,
      "endpoint": null,
      "headers": {
        "Authorization": "Bearer sk-your-key-here"
      },
      "timeout_ms": 30000
    }
  ]
}
Troubleshooting
Error: "Embedding config not set for dataset"
Cause: You tried to use lanceStoreText or lanceSearchText without configuring an embedder.
Solution: Run lanceSetEmbeddingConfig first.
Error: "Embedding dimension mismatch: expected X, got Y"
Cause: The embedding service returned vectors of a different size than configured.
Solution:
- For OpenAI text-embedding-3-small, use dim: 1536
- For your local mock (from this tutorial), use dim: 768
- Check your embedding service's actual output dimension
Error: "Missing API key in env 'OPENAI_API_KEY'"
Cause: Using OpenAI provider without setting the API key.
Solution:
- Set export OPENAI_API_KEY="sk-..."before starting HeroDB, OR
- Pass the key explicitly in headers: "Authorization": "Bearer sk-..."
Error: "HTTP request failed" or "Embeddings API error 404"
Cause: Cannot reach the embedding endpoint.
Solution:
- Verify your local server is running: curl http://127.0.0.1:8081/v1/embeddings
- Check the endpoint URL in your config
- Ensure firewall allows the connection
Error: "ERR DB backend is not Lance"
Cause: Trying to use LANCE.* commands on a non-Lance database.
Solution: Create the database with backend "Lance" (see Step 1).
Error: "write permission denied"
Cause: Database is private and you haven't authenticated.
Solution: Use SELECT <db_id> KEY <access-key> or make the database public via RPC.
Complete Example Script (Bash + curl)
Save as test_embeddings.sh:
#!/bin/bash
RPC_URL="http://localhost:8080"
# 1. Create Lance database
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
  "jsonrpc": "2.0",
  "id": 1,
  "method": "herodb_createDatabase",
  "params": ["Lance", {"name": "test-vectors", "storage_path": null, "max_size": null, "redis_version": null}, null]
}'
echo -e "\n"
# 2. Configure local embedder
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
  "jsonrpc": "2.0",
  "id": 2,
  "method": "herodb_lanceSetEmbeddingConfig",
  "params": [1, "products", {
    "provider": "openai",
    "model": "mock",
    "dim": 768,
    "endpoint": "http://127.0.0.1:8081/v1/embeddings",
    "headers": {"Authorization": "Bearer dummy"},
    "timeout_ms": 30000
  }]
}'
echo -e "\n"
# 3. Insert data
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
  "jsonrpc": "2.0",
  "id": 3,
  "method": "herodb_lanceStoreText",
  "params": [1, "products", "item-1", "Hiking boots", {"brand": "TrailMax"}]
}'
echo -e "\n"
# 4. Search
curl -X POST $RPC_URL -H "Content-Type: application/json" -d '{
  "jsonrpc": "2.0",
  "id": 4,
  "method": "herodb_lanceSearchText",
  "params": [1, "products", "outdoor footwear", 5, null, null]
}'
echo -e "\n"
Run:
chmod +x test_embeddings.sh
./test_embeddings.sh
Summary
| Provider | Use Case | Endpoint | API Key | 
|---|---|---|---|
| openai | Production semantic search | Default (OpenAI) or custom URL | OPENAI_API_KEY env or headers | 
| openai | Local self-hosted gateway | http://127.0.0.1:8081/... | Optional (depends on your service) | 
| test | CI/offline development | N/A (local hash) | None | 
| image_test | Image testing | N/A (local hash) | None | 
Notes:
- The providerfield is always"openai"for OpenAI-compatible services (whether cloud or local). This is because it uses the OpenAI-compatible API shape.
- Use endpointto point to your local service
- Use headersfor custom authentication
- dimmust match your embedding service's output dimension
- Once configured, lanceStoreTextandlanceSearchTexthandle embedding automatically