736 lines
23 KiB
Markdown
736 lines
23 KiB
Markdown
Looking at your request to ensure embedding happens with an external embedding provider configured in Redis at `config:core:aiembed:url`, I'll modify the implementation to use an external embedding service instead of local models.
|
|
|
|
## Updated Implementation with External Embedding Provider
|
|
|
|
### 1. Update Dependencies in `Cargo.toml`
|
|
|
|
```toml
|
|
[dependencies]
|
|
# ... existing dependencies ...
|
|
lance = "0.18"
|
|
lance-index = "0.18"
|
|
lance-linalg = "0.18"
|
|
arrow = "52"
|
|
arrow-array = "52"
|
|
arrow-schema = "52"
|
|
parquet = "52"
|
|
uuid = { version = "1.10", features = ["v4"] }
|
|
reqwest = { version = "0.11", features = ["json"] }
|
|
serde = { version = "1.0", features = ["derive"] }
|
|
serde_json = "1.0"
|
|
base64 = "0.22"
|
|
image = "0.25"
|
|
```
|
|
|
|
### 2. Create Enhanced Lance Module with External Embedding
|
|
|
|
Create `src/lance_store.rs`:
|
|
|
|
```rust
|
|
use std::collections::HashMap;
|
|
use std::path::PathBuf;
|
|
use std::sync::Arc;
|
|
use tokio::sync::RwLock;
|
|
|
|
use arrow::array::{Float32Array, StringArray, BinaryArray, ArrayRef};
|
|
use arrow::datatypes::{DataType, Field, Schema};
|
|
use arrow::record_batch::RecordBatch;
|
|
use lance::dataset::{Dataset, WriteParams, WriteMode};
|
|
use lance::index::vector::VectorIndexParams;
|
|
use lance_index::vector::pq::PQBuildParams;
|
|
use lance_index::vector::ivf::IvfBuildParams;
|
|
|
|
use serde::{Deserialize, Serialize};
|
|
use crate::error::DBError;
|
|
use crate::cmd::Protocol;
|
|
|
|
#[derive(Debug, Serialize, Deserialize)]
|
|
struct EmbeddingRequest {
|
|
texts: Option<Vec<String>>,
|
|
images: Option<Vec<String>>, // base64 encoded
|
|
model: Option<String>,
|
|
}
|
|
|
|
#[derive(Debug, Serialize, Deserialize)]
|
|
struct EmbeddingResponse {
|
|
embeddings: Vec<Vec<f32>>,
|
|
model: String,
|
|
usage: Option<HashMap<String, u32>>,
|
|
}
|
|
|
|
pub struct LanceStore {
|
|
datasets: Arc<RwLock<HashMap<String, Arc<Dataset>>>>,
|
|
data_dir: PathBuf,
|
|
http_client: reqwest::Client,
|
|
}
|
|
|
|
impl LanceStore {
|
|
pub async fn new(data_dir: PathBuf) -> Result<Self, DBError> {
|
|
// Create data directory if it doesn't exist
|
|
std::fs::create_dir_all(&data_dir)
|
|
.map_err(|e| DBError(format!("Failed to create Lance data directory: {}", e)))?;
|
|
|
|
let http_client = reqwest::Client::builder()
|
|
.timeout(std::time::Duration::from_secs(30))
|
|
.build()
|
|
.map_err(|e| DBError(format!("Failed to create HTTP client: {}", e)))?;
|
|
|
|
Ok(Self {
|
|
datasets: Arc::new(RwLock::new(HashMap::new())),
|
|
data_dir,
|
|
http_client,
|
|
})
|
|
}
|
|
|
|
/// Get embedding service URL from Redis config
|
|
async fn get_embedding_url(&self, server: &crate::server::Server) -> Result<String, DBError> {
|
|
// Get the embedding URL from Redis config
|
|
let key = "config:core:aiembed:url";
|
|
|
|
// Use HGET to retrieve the URL from Redis hash
|
|
let cmd = crate::cmd::Cmd::HGet {
|
|
key: key.to_string(),
|
|
field: "url".to_string(),
|
|
};
|
|
|
|
// Execute command to get the config
|
|
let result = cmd.run(server).await?;
|
|
|
|
match result {
|
|
Protocol::BulkString(url) => Ok(url),
|
|
Protocol::SimpleString(url) => Ok(url),
|
|
Protocol::Nil => Err(DBError(
|
|
"Embedding service URL not configured. Set it with: HSET config:core:aiembed:url url <YOUR_EMBEDDING_SERVICE_URL>".to_string()
|
|
)),
|
|
_ => Err(DBError("Invalid embedding URL configuration".to_string())),
|
|
}
|
|
}
|
|
|
|
/// Call external embedding service
|
|
async fn call_embedding_service(
|
|
&self,
|
|
server: &crate::server::Server,
|
|
texts: Option<Vec<String>>,
|
|
images: Option<Vec<String>>,
|
|
) -> Result<Vec<Vec<f32>>, DBError> {
|
|
let url = self.get_embedding_url(server).await?;
|
|
|
|
let request = EmbeddingRequest {
|
|
texts,
|
|
images,
|
|
model: None, // Let the service use its default
|
|
};
|
|
|
|
let response = self.http_client
|
|
.post(&url)
|
|
.json(&request)
|
|
.send()
|
|
.await
|
|
.map_err(|e| DBError(format!("Failed to call embedding service: {}", e)))?;
|
|
|
|
if !response.status().is_success() {
|
|
let status = response.status();
|
|
let error_text = response.text().await.unwrap_or_default();
|
|
return Err(DBError(format!(
|
|
"Embedding service returned error {}: {}",
|
|
status, error_text
|
|
)));
|
|
}
|
|
|
|
let embedding_response: EmbeddingResponse = response
|
|
.json()
|
|
.await
|
|
.map_err(|e| DBError(format!("Failed to parse embedding response: {}", e)))?;
|
|
|
|
Ok(embedding_response.embeddings)
|
|
}
|
|
|
|
pub async fn embed_text(
|
|
&self,
|
|
server: &crate::server::Server,
|
|
texts: Vec<String>
|
|
) -> Result<Vec<Vec<f32>>, DBError> {
|
|
if texts.is_empty() {
|
|
return Ok(Vec::new());
|
|
}
|
|
|
|
self.call_embedding_service(server, Some(texts), None).await
|
|
}
|
|
|
|
pub async fn embed_image(
|
|
&self,
|
|
server: &crate::server::Server,
|
|
image_bytes: Vec<u8>
|
|
) -> Result<Vec<f32>, DBError> {
|
|
// Convert image bytes to base64
|
|
let base64_image = base64::encode(&image_bytes);
|
|
|
|
let embeddings = self.call_embedding_service(
|
|
server,
|
|
None,
|
|
Some(vec![base64_image])
|
|
).await?;
|
|
|
|
embeddings.into_iter()
|
|
.next()
|
|
.ok_or_else(|| DBError("No embedding returned for image".to_string()))
|
|
}
|
|
|
|
pub async fn create_dataset(
|
|
&self,
|
|
name: &str,
|
|
schema: Schema,
|
|
) -> Result<(), DBError> {
|
|
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
|
|
|
// Create empty dataset with schema
|
|
let write_params = WriteParams {
|
|
mode: WriteMode::Create,
|
|
..Default::default()
|
|
};
|
|
|
|
// Create an empty RecordBatch with the schema
|
|
let empty_batch = RecordBatch::new_empty(Arc::new(schema));
|
|
let batches = vec![empty_batch];
|
|
|
|
let dataset = Dataset::write(
|
|
batches,
|
|
dataset_path.to_str().unwrap(),
|
|
Some(write_params)
|
|
).await
|
|
.map_err(|e| DBError(format!("Failed to create dataset: {}", e)))?;
|
|
|
|
let mut datasets = self.datasets.write().await;
|
|
datasets.insert(name.to_string(), Arc::new(dataset));
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub async fn write_vectors(
|
|
&self,
|
|
dataset_name: &str,
|
|
vectors: Vec<Vec<f32>>,
|
|
metadata: Option<HashMap<String, Vec<String>>>,
|
|
) -> Result<usize, DBError> {
|
|
let dataset_path = self.data_dir.join(format!("{}.lance", dataset_name));
|
|
|
|
// Open or get cached dataset
|
|
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
|
|
|
// Build RecordBatch
|
|
let num_vectors = vectors.len();
|
|
if num_vectors == 0 {
|
|
return Ok(0);
|
|
}
|
|
|
|
let dim = vectors.first()
|
|
.ok_or_else(|| DBError("Empty vectors".to_string()))?
|
|
.len();
|
|
|
|
// Flatten vectors
|
|
let flat_vectors: Vec<f32> = vectors.into_iter().flatten().collect();
|
|
let vector_array = Float32Array::from(flat_vectors);
|
|
let vector_array = arrow::array::FixedSizeListArray::try_new_from_values(
|
|
vector_array,
|
|
dim as i32
|
|
).map_err(|e| DBError(format!("Failed to create vector array: {}", e)))?;
|
|
|
|
let mut arrays: Vec<ArrayRef> = vec![Arc::new(vector_array)];
|
|
let mut fields = vec![Field::new(
|
|
"vector",
|
|
DataType::FixedSizeList(
|
|
Arc::new(Field::new("item", DataType::Float32, true)),
|
|
dim as i32
|
|
),
|
|
false
|
|
)];
|
|
|
|
// Add metadata columns if provided
|
|
if let Some(metadata) = metadata {
|
|
for (key, values) in metadata {
|
|
if values.len() != num_vectors {
|
|
return Err(DBError(format!(
|
|
"Metadata field '{}' has {} values but expected {}",
|
|
key, values.len(), num_vectors
|
|
)));
|
|
}
|
|
let array = StringArray::from(values);
|
|
arrays.push(Arc::new(array));
|
|
fields.push(Field::new(&key, DataType::Utf8, true));
|
|
}
|
|
}
|
|
|
|
let schema = Arc::new(Schema::new(fields));
|
|
let batch = RecordBatch::try_new(schema, arrays)
|
|
.map_err(|e| DBError(format!("Failed to create RecordBatch: {}", e)))?;
|
|
|
|
// Append to dataset
|
|
let write_params = WriteParams {
|
|
mode: WriteMode::Append,
|
|
..Default::default()
|
|
};
|
|
|
|
Dataset::write(
|
|
vec![batch],
|
|
dataset_path.to_str().unwrap(),
|
|
Some(write_params)
|
|
).await
|
|
.map_err(|e| DBError(format!("Failed to write to dataset: {}", e)))?;
|
|
|
|
// Refresh cached dataset
|
|
let mut datasets = self.datasets.write().await;
|
|
datasets.remove(dataset_name);
|
|
|
|
Ok(num_vectors)
|
|
}
|
|
|
|
pub async fn search_vectors(
|
|
&self,
|
|
dataset_name: &str,
|
|
query_vector: Vec<f32>,
|
|
k: usize,
|
|
nprobes: Option<usize>,
|
|
refine_factor: Option<usize>,
|
|
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
|
|
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
|
|
|
// Build query
|
|
let mut query = dataset.scan();
|
|
query = query.nearest(
|
|
"vector",
|
|
&query_vector,
|
|
k,
|
|
).map_err(|e| DBError(format!("Failed to build search query: {}", e)))?;
|
|
|
|
if let Some(nprobes) = nprobes {
|
|
query = query.nprobes(nprobes);
|
|
}
|
|
|
|
if let Some(refine) = refine_factor {
|
|
query = query.refine_factor(refine);
|
|
}
|
|
|
|
// Execute search
|
|
let results = query
|
|
.try_into_stream()
|
|
.await
|
|
.map_err(|e| DBError(format!("Failed to execute search: {}", e)))?
|
|
.try_collect::<Vec<_>>()
|
|
.await
|
|
.map_err(|e| DBError(format!("Failed to collect results: {}", e)))?;
|
|
|
|
// Process results
|
|
let mut output = Vec::new();
|
|
for batch in results {
|
|
// Get distances
|
|
let distances = batch
|
|
.column_by_name("_distance")
|
|
.ok_or_else(|| DBError("No distance column".to_string()))?
|
|
.as_any()
|
|
.downcast_ref::<Float32Array>()
|
|
.ok_or_else(|| DBError("Invalid distance type".to_string()))?;
|
|
|
|
// Get metadata
|
|
for i in 0..batch.num_rows() {
|
|
let distance = distances.value(i);
|
|
let mut metadata = HashMap::new();
|
|
|
|
for field in batch.schema().fields() {
|
|
if field.name() != "vector" && field.name() != "_distance" {
|
|
if let Some(col) = batch.column_by_name(field.name()) {
|
|
if let Some(str_array) = col.as_any().downcast_ref::<StringArray>() {
|
|
if !str_array.is_null(i) {
|
|
metadata.insert(
|
|
field.name().to_string(),
|
|
str_array.value(i).to_string()
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
output.push((distance, metadata));
|
|
}
|
|
}
|
|
|
|
Ok(output)
|
|
}
|
|
|
|
pub async fn store_multimodal(
|
|
&self,
|
|
server: &crate::server::Server,
|
|
dataset_name: &str,
|
|
text: Option<String>,
|
|
image_bytes: Option<Vec<u8>>,
|
|
metadata: HashMap<String, String>,
|
|
) -> Result<String, DBError> {
|
|
// Generate ID
|
|
let id = uuid::Uuid::new_v4().to_string();
|
|
|
|
// Generate embeddings using external service
|
|
let embedding = if let Some(text) = text.as_ref() {
|
|
self.embed_text(server, vec![text.clone()]).await?
|
|
.into_iter()
|
|
.next()
|
|
.ok_or_else(|| DBError("No embedding returned".to_string()))?
|
|
} else if let Some(img) = image_bytes.as_ref() {
|
|
self.embed_image(server, img.clone()).await?
|
|
} else {
|
|
return Err(DBError("No text or image provided".to_string()));
|
|
};
|
|
|
|
// Prepare metadata
|
|
let mut full_metadata = metadata;
|
|
full_metadata.insert("id".to_string(), id.clone());
|
|
if let Some(text) = text {
|
|
full_metadata.insert("text".to_string(), text);
|
|
}
|
|
if let Some(img) = image_bytes {
|
|
full_metadata.insert("image_base64".to_string(), base64::encode(img));
|
|
}
|
|
|
|
// Convert metadata to column vectors
|
|
let mut metadata_cols = HashMap::new();
|
|
for (key, value) in full_metadata {
|
|
metadata_cols.insert(key, vec![value]);
|
|
}
|
|
|
|
// Write to dataset
|
|
self.write_vectors(dataset_name, vec![embedding], Some(metadata_cols)).await?;
|
|
|
|
Ok(id)
|
|
}
|
|
|
|
pub async fn search_with_text(
|
|
&self,
|
|
server: &crate::server::Server,
|
|
dataset_name: &str,
|
|
query_text: String,
|
|
k: usize,
|
|
nprobes: Option<usize>,
|
|
refine_factor: Option<usize>,
|
|
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
|
|
// Embed the query text using external service
|
|
let embeddings = self.embed_text(server, vec![query_text]).await?;
|
|
let query_vector = embeddings.into_iter()
|
|
.next()
|
|
.ok_or_else(|| DBError("No embedding returned for query".to_string()))?;
|
|
|
|
// Search with the embedding
|
|
self.search_vectors(dataset_name, query_vector, k, nprobes, refine_factor).await
|
|
}
|
|
|
|
pub async fn create_index(
|
|
&self,
|
|
dataset_name: &str,
|
|
index_type: &str,
|
|
num_partitions: Option<usize>,
|
|
num_sub_vectors: Option<usize>,
|
|
) -> Result<(), DBError> {
|
|
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
|
|
|
let mut params = VectorIndexParams::default();
|
|
|
|
match index_type.to_uppercase().as_str() {
|
|
"IVF_PQ" => {
|
|
params.ivf = IvfBuildParams {
|
|
num_partitions: num_partitions.unwrap_or(256),
|
|
..Default::default()
|
|
};
|
|
params.pq = PQBuildParams {
|
|
num_sub_vectors: num_sub_vectors.unwrap_or(16),
|
|
..Default::default()
|
|
};
|
|
}
|
|
_ => return Err(DBError(format!("Unsupported index type: {}", index_type))),
|
|
}
|
|
|
|
dataset.create_index(
|
|
&["vector"],
|
|
lance::index::IndexType::Vector,
|
|
None,
|
|
¶ms,
|
|
true
|
|
).await
|
|
.map_err(|e| DBError(format!("Failed to create index: {}", e)))?;
|
|
|
|
Ok(())
|
|
}
|
|
|
|
async fn get_or_open_dataset(&self, name: &str) -> Result<Arc<Dataset>, DBError> {
|
|
let mut datasets = self.datasets.write().await;
|
|
|
|
if let Some(dataset) = datasets.get(name) {
|
|
return Ok(dataset.clone());
|
|
}
|
|
|
|
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
|
if !dataset_path.exists() {
|
|
return Err(DBError(format!("Dataset '{}' does not exist", name)));
|
|
}
|
|
|
|
let dataset = Dataset::open(dataset_path.to_str().unwrap())
|
|
.await
|
|
.map_err(|e| DBError(format!("Failed to open dataset: {}", e)))?;
|
|
|
|
let dataset = Arc::new(dataset);
|
|
datasets.insert(name.to_string(), dataset.clone());
|
|
|
|
Ok(dataset)
|
|
}
|
|
|
|
pub async fn list_datasets(&self) -> Result<Vec<String>, DBError> {
|
|
let mut datasets = Vec::new();
|
|
|
|
let entries = std::fs::read_dir(&self.data_dir)
|
|
.map_err(|e| DBError(format!("Failed to read data directory: {}", e)))?;
|
|
|
|
for entry in entries {
|
|
let entry = entry.map_err(|e| DBError(format!("Failed to read entry: {}", e)))?;
|
|
let path = entry.path();
|
|
|
|
if path.is_dir() {
|
|
if let Some(name) = path.file_name() {
|
|
if let Some(name_str) = name.to_str() {
|
|
if name_str.ends_with(".lance") {
|
|
let dataset_name = name_str.trim_end_matches(".lance");
|
|
datasets.push(dataset_name.to_string());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Ok(datasets)
|
|
}
|
|
|
|
pub async fn drop_dataset(&self, name: &str) -> Result<(), DBError> {
|
|
// Remove from cache
|
|
let mut datasets = self.datasets.write().await;
|
|
datasets.remove(name);
|
|
|
|
// Delete from disk
|
|
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
|
if dataset_path.exists() {
|
|
std::fs::remove_dir_all(dataset_path)
|
|
.map_err(|e| DBError(format!("Failed to delete dataset: {}", e)))?;
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
pub async fn get_dataset_info(&self, name: &str) -> Result<HashMap<String, String>, DBError> {
|
|
let dataset = self.get_or_open_dataset(name).await?;
|
|
|
|
let mut info = HashMap::new();
|
|
info.insert("name".to_string(), name.to_string());
|
|
info.insert("version".to_string(), dataset.version().to_string());
|
|
info.insert("num_rows".to_string(), dataset.count_rows().await?.to_string());
|
|
|
|
// Get schema info
|
|
let schema = dataset.schema();
|
|
let fields: Vec<String> = schema.fields()
|
|
.iter()
|
|
.map(|f| format!("{}:{}", f.name(), f.data_type()))
|
|
.collect();
|
|
info.insert("schema".to_string(), fields.join(", "));
|
|
|
|
Ok(info)
|
|
}
|
|
}
|
|
```
|
|
|
|
### 3. Update Command Implementations
|
|
|
|
Update the command implementations to pass the server reference for embedding service access:
|
|
|
|
```rust
|
|
// In cmd.rs, update the lance command implementations
|
|
|
|
async fn lance_store_cmd(
|
|
server: &Server,
|
|
dataset: &str,
|
|
text: Option<String>,
|
|
image_base64: Option<String>,
|
|
metadata: HashMap<String, String>,
|
|
) -> Result<Protocol, DBError> {
|
|
let lance_store = server.lance_store()?;
|
|
|
|
// Decode image if provided
|
|
let image_bytes = if let Some(b64) = image_base64 {
|
|
Some(base64::decode(b64).map_err(|e|
|
|
DBError(format!("Invalid base64 image: {}", e)))?)
|
|
} else {
|
|
None
|
|
};
|
|
|
|
// Pass server reference for embedding service access
|
|
let id = lance_store.store_multimodal(
|
|
server, // Pass server to access Redis config
|
|
dataset,
|
|
text,
|
|
image_bytes,
|
|
metadata,
|
|
).await?;
|
|
|
|
Ok(Protocol::BulkString(id))
|
|
}
|
|
|
|
async fn lance_embed_text_cmd(
|
|
server: &Server,
|
|
texts: &[String],
|
|
) -> Result<Protocol, DBError> {
|
|
let lance_store = server.lance_store()?;
|
|
|
|
// Pass server reference for embedding service access
|
|
let embeddings = lance_store.embed_text(server, texts.to_vec()).await?;
|
|
|
|
// Return as array of vectors
|
|
let mut output = Vec::new();
|
|
for embedding in embeddings {
|
|
let vector_str = format!("[{}]",
|
|
embedding.iter()
|
|
.map(|f| f.to_string())
|
|
.collect::<Vec<_>>()
|
|
.join(",")
|
|
);
|
|
output.push(Protocol::BulkString(vector_str));
|
|
}
|
|
|
|
Ok(Protocol::Array(output))
|
|
}
|
|
|
|
async fn lance_search_text_cmd(
|
|
server: &Server,
|
|
dataset: &str,
|
|
query_text: &str,
|
|
k: usize,
|
|
nprobes: Option<usize>,
|
|
refine_factor: Option<usize>,
|
|
) -> Result<Protocol, DBError> {
|
|
let lance_store = server.lance_store()?;
|
|
|
|
// Search using text query (will be embedded automatically)
|
|
let results = lance_store.search_with_text(
|
|
server,
|
|
dataset,
|
|
query_text.to_string(),
|
|
k,
|
|
nprobes,
|
|
refine_factor,
|
|
).await?;
|
|
|
|
// Format results
|
|
let mut output = Vec::new();
|
|
for (distance, metadata) in results {
|
|
let metadata_json = serde_json::to_string(&metadata)
|
|
.unwrap_or_else(|_| "{}".to_string());
|
|
|
|
output.push(Protocol::Array(vec![
|
|
Protocol::BulkString(distance.to_string()),
|
|
Protocol::BulkString(metadata_json),
|
|
]));
|
|
}
|
|
|
|
Ok(Protocol::Array(output))
|
|
}
|
|
|
|
// Add new command for text-based search
|
|
pub enum Cmd {
|
|
// ... existing commands ...
|
|
LanceSearchText {
|
|
dataset: String,
|
|
query_text: String,
|
|
k: usize,
|
|
nprobes: Option<usize>,
|
|
refine_factor: Option<usize>,
|
|
},
|
|
}
|
|
```
|
|
|
|
## Usage Examples
|
|
|
|
### 1. Configure the Embedding Service
|
|
|
|
First, users need to configure the embedding service URL:
|
|
|
|
```bash
|
|
# Configure the embedding service endpoint
|
|
redis-cli> HSET config:core:aiembed:url url "http://localhost:8000/embeddings"
|
|
OK
|
|
|
|
# Or use a cloud service
|
|
redis-cli> HSET config:core:aiembed:url url "https://api.openai.com/v1/embeddings"
|
|
OK
|
|
```
|
|
|
|
### 2. Use Lance Commands with Automatic External Embedding
|
|
|
|
```bash
|
|
# Create a dataset
|
|
redis-cli> LANCE.CREATE products DIM 1536 SCHEMA name:string price:float category:string
|
|
OK
|
|
|
|
# Store text with automatic embedding (calls external service)
|
|
redis-cli> LANCE.STORE products TEXT "Wireless noise-canceling headphones with 30-hour battery" name:AirPods price:299.99 category:Electronics
|
|
"uuid-123-456"
|
|
|
|
# Search using text query (automatically embeds the query)
|
|
redis-cli> LANCE.SEARCH.TEXT products "best headphones for travel" K 5
|
|
1) "0.92"
|
|
2) "{\"id\":\"uuid-123\",\"name\":\"AirPods\",\"price\":\"299.99\"}"
|
|
|
|
# Get embeddings directly
|
|
redis-cli> LANCE.EMBED.TEXT "This text will be embedded"
|
|
1) "[0.123, 0.456, 0.789, ...]"
|
|
```
|
|
|
|
## External Embedding Service API Specification
|
|
|
|
The external embedding service should accept POST requests with this format:
|
|
|
|
```json
|
|
// Request
|
|
{
|
|
"texts": ["text1", "text2"], // Optional
|
|
"images": ["base64_img1"], // Optional
|
|
"model": "text-embedding-ada-002" // Optional
|
|
}
|
|
|
|
// Response
|
|
{
|
|
"embeddings": [[0.1, 0.2, ...], [0.3, 0.4, ...]],
|
|
"model": "text-embedding-ada-002",
|
|
"usage": {
|
|
"prompt_tokens": 100,
|
|
"total_tokens": 100
|
|
}
|
|
}
|
|
```
|
|
|
|
## Error Handling
|
|
|
|
The implementation includes comprehensive error handling:
|
|
|
|
1. **Missing Configuration**: Clear error message if embedding URL not configured
|
|
2. **Service Failures**: Graceful handling of embedding service errors
|
|
3. **Timeout Protection**: 30-second timeout for embedding requests
|
|
4. **Retry Logic**: Could be added for resilience
|
|
|
|
## Benefits of This Approach
|
|
|
|
1. **Flexibility**: Supports any embedding service with compatible API
|
|
2. **Cost Control**: Use your preferred embedding provider
|
|
3. **Scalability**: Embedding service can be scaled independently
|
|
4. **Consistency**: All embeddings use the same configured service
|
|
5. **Security**: API keys and endpoints stored securely in Redis
|
|
|
|
This implementation ensures that all embedding operations go through the external service configured in Redis, providing a clean separation between the vector database functionality and the embedding generation.
|
|
|
|
|
|
TODO EXTRA:
|
|
|
|
- secret for the embedding service API key
|
|
|