Merge branch 'development_action007_mahmoud' into development

* development_action007_mahmoud:
  feat: Add upsert points functionality to Qdrant client
  feat: Remove unnecessary delete_collection call in example
  feat: Add Qdrant client's retrieve_points functionality
  feat: Improve Qdrant client example
  ...
  feat: Add Jina server health check
  feat: Add multi-vector API support
  feat: Add classifier deletion functionality
  qdrant
  feat: Add classifier listing functionality
  feat: Enhance Jina client with improved classification API
  feat: Add train functionality to Jina client
  feat: Add Jina client training and classification features
  feat: Add reranking functionality to Jina client
  feat: Enhance Jina client with additional embedding parameters
  feat: Add create_embeddings function to Jina client
  fix: Ensure the code compiles and add a test example
  ...
  jina specs
This commit is contained in:
2025-03-24 05:29:51 +01:00
73 changed files with 20973 additions and 825 deletions

View File

@@ -0,0 +1,69 @@
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
import freeflowuniverse.herolib.clients.jina
import freeflowuniverse.herolib.osal
import os
// Example of using the Jina client
fn main() {
// Set environment variable for testing
// In production, you would set this in your environment
// osal.env_set(key: 'JINAKEY', value: 'your-api-key')
// Check if JINAKEY environment variable exists
if !osal.env_exists('JINAKEY') {
println('JINAKEY environment variable not set. Please set it before running this example.')
exit(1)
}
// Create a Jina client instance
mut client := jina.get(name: 'default')!
println('Jina client initialized successfully.')
// Example: Create embeddings
model := 'jina-embeddings-v3'
texts := ['Hello, world!', 'How are you doing?']
println('Creating embeddings for texts: ${texts}')
result := client.create_embeddings(texts, model, 'retrieval.query')!
println('Embeddings created successfully.')
println('Model: ${result['model']}')
println('Data count: ${result['data'].arr().len}')
// Example: List classifiers
println('\nListing classifiers:')
classifiers := client.list_classifiers() or {
println('Failed to list classifiers: ${err}')
return
}
println('Classifiers retrieved successfully.')
// Example: Create a classifier
println('\nTraining a classifier:')
examples := [
jina.TrainingExample{
text: 'This movie was great!'
label: 'positive'
},
jina.TrainingExample{
text: 'I did not like this movie.'
label: 'negative'
},
jina.TrainingExample{
text: 'The movie was okay.'
label: 'neutral'
}
]
training_result := client.train(examples, model, 'private') or {
println('Failed to train classifier: ${err}')
return
}
println('Classifier trained successfully.')
println('Classifier ID: ${training_result['classifier_id']}')
}

View File

@@ -1,86 +0,0 @@
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
import os
import freeflowuniverse.herolib.core.pathlib
// Helper function to format file sizes
fn format_size(size i64) string {
if size < 1024 {
return '${size} B'
} else if size < 1024 * 1024 {
kb := f64(size) / 1024.0
return '${kb:.1f} KB'
} else if size < 1024 * 1024 * 1024 {
mb := f64(size) / (1024.0 * 1024.0)
return '${mb:.1f} MB'
} else {
gb := f64(size) / (1024.0 * 1024.0 * 1024.0)
return '${gb:.1f} GB'
}
}
// Set parameters directly in the script
// Change these values as needed
target_dir := '/tmp' // Current directory by default
show_hidden := false // Set to true to show hidden files
recursive := false // Set to true for recursive listing
// Create a Path object for the target directory
mut path := pathlib.get(target_dir)
// Ensure the directory exists and is a directory
if path.exist == .no {
eprintln('Error: Directory "${target_dir}" does not exist')
exit(1)
}
if path.cat != .dir && path.cat != .linkdir {
eprintln('Error: "${target_dir}" is not a directory')
exit(1)
}
// Main execution
println('Listing contents of: ${path.absolute()}')
println('----------------------------')
// Define list arguments
mut list_args := pathlib.ListArgs{
recursive: recursive,
ignoredefault: !show_hidden
}
// Use pathlib to list the directory contents
mut list_result := path.list(list_args) or {
eprintln('Error listing directory: ${err}')
exit(1)
}
// Print each file/directory
for p in list_result.paths {
// Skip the root directory itself
if p.path == path.path {
continue
}
// Calculate the level based on the path depth relative to the root
rel_path := p.path.replace(list_result.root, '')
level := rel_path.count('/') - if rel_path.starts_with('/') { 1 } else { 0 }
// Print indentation based on level
if level > 0 {
print(' '.repeat(level))
}
// Print file/directory info
name := p.name()
if p.cat == .dir || p.cat == .linkdir {
println('📁 ${name}/')
} else {
// Get file size
file_size := os.file_size(p.path)
println('📄 ${name} (${format_size(file_size)})')
}
}
println('----------------------------')
println('Done!')

86
examples/clients/jina.vsh Executable file
View File

@@ -0,0 +1,86 @@
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
import freeflowuniverse.herolib.clients.jina
mut jina_client := jina.get()!
health := jina_client.health()!
println('Server health: ${health}')
// Create embeddings
embeddings := jina_client.create_embeddings(
input: ['Hello', 'World']
model: .jina_embeddings_v3
task: 'separation'
) or { panic('Error while creating embeddings: ${err}') }
println('Created embeddings: ${embeddings}')
// Rerank
rerank_result := jina_client.rerank(
model: .reranker_v2_base_multilingual
query: 'skincare products'
documents: ['Product A', 'Product B', 'Product C']
top_n: 2
) or { panic('Error while reranking: ${err}') }
println('Rerank result: ${rerank_result}')
// Train
train_result := jina_client.train(
model: .jina_clip_v1
input: [
jina.TrainingExample{
text: 'Sample text'
label: 'positive'
},
jina.TrainingExample{
image: 'https://letsenhance.io/static/73136da51c245e80edc6ccfe44888a99/1015f/MainBefore.jpg'
label: 'negative'
},
]
) or { panic('Error while training: ${err}') }
println('Train result: ${train_result}')
// Classify
classify_result := jina_client.classify(
model: .jina_clip_v1
input: [
jina.ClassificationInput{
text: 'A photo of a cat'
},
jina.ClassificationInput{
image: 'https://letsenhance.io/static/73136da51c245e80edc6ccfe44888a99/1015f/MainBefore.jpg'
},
]
labels: ['cat', 'dog']
) or { panic('Error while classifying: ${err}') }
println('Classification result: ${classify_result}')
// List classifiers
classifiers := jina_client.list_classifiers() or { panic('Error fetching classifiers: ${err}') }
println('Classifiers: ${classifiers}')
// Delete classifier
delete_result := jina_client.delete_classifier(classifier_id: classifiers[0].classifier_id) or {
panic('Error deleting classifier: ${err}')
}
println('Delete result: ${delete_result}')
// Create multi vector
multi_vector := jina_client.create_multi_vector(
input: [
jina.MultiVectorTextDoc{
text: 'Hello world'
input_type: .document
},
jina.MultiVectorTextDoc{
text: "What's up?"
input_type: .query
},
]
embedding_type: ['float']
// dimensions: 96
)!
println('Multi vector: ${multi_vector}')

View File

@@ -0,0 +1,85 @@
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
import freeflowuniverse.herolib.clients.qdrant
import freeflowuniverse.herolib.core.httpconnection
import rand
// 1. Get the qdrant client
mut qdrant_client := qdrant.get()!
// 2. Generate collection name
collection_name := 'collection_' + rand.string(4)
// 2. Create a new collection
created_collection := qdrant_client.create_collection(
collection_name: collection_name
size: 15
distance: 'Cosine'
)!
println('Created Collection: ${created_collection}')
// 3. Get the created collection
get_collection := qdrant_client.get_collection(
collection_name: collection_name
)!
println('Get Collection: ${get_collection}')
// 4. Delete the created collection
// deleted_collection := qdrant_client.delete_collection(
// collection_name: collection_name
// )!
// println('Deleted Collection: ${deleted_collection}')
// 5. List all collections
list_collection := qdrant_client.list_collections()!
println('List Collection: ${list_collection}')
// 6. Check collection existence
collection_existence := qdrant_client.is_collection_exists(
collection_name: collection_name
)!
println('Collection Existence: ${collection_existence}')
// 7. Retrieve points
collection_points := qdrant_client.retrieve_points(
collection_name: collection_name
ids: [
0,
3,
100,
]
)!
println('Collection Points: ${collection_points}')
// 8. Upsert points
upsert_points := qdrant_client.upsert_points(
collection_name: collection_name
points: [
qdrant.Point{
payload: {
'key': 'value'
}
vector: [1.0, 2.0, 3.0]
},
qdrant.Point{
payload: {
'key': 'value'
}
vector: [4.0, 5.0, 6.0]
},
qdrant.Point{
payload: {
'key': 'value'
}
vector: [7.0, 8.0, 9.0]
},
]
)!
println('Upsert Points: ${upsert_points}')

View File

@@ -0,0 +1,9 @@
#!/usr/bin/env -S v -n -w -cg -gc none -cc tcc -d use_openssl -enable-globals run
import freeflowuniverse.herolib.installers.db.qdrant as qdrant_installer
mut db := qdrant_installer.get()!
db.install()!
db.start()!

View File

@@ -3,5 +3,8 @@
import freeflowuniverse.herolib.installers.lang.python as python_module
mut python_installer := python_module.get()!
// python_installer.install()!
python_installer.destroy()!
python_installer.install()!
// python_installer.destroy()!

50
examples/jina_example.vsh Executable file
View File

@@ -0,0 +1,50 @@
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
import freeflowuniverse.herolib.clients.jina
import os
import json
fn main() {
// Initialize Jina client
mut j := jina.Jina{
name: 'test_client'
secret: os.getenv('JINAKEY')
}
// Initialize the client
j = jina.obj_init(j) or {
println('Error initializing Jina client: ${err}')
return
}
// Check if authentication works
auth_ok := j.check_auth() or {
println('Authentication failed: ${err}')
return
}
println('Authentication successful: ${auth_ok}')
// Create embeddings
model := 'jina-embeddings-v2-base-en'
input := ['Hello world', 'This is a test']
embeddings := j.create_embeddings(input, model, 'search') or {
println('Error creating embeddings: ${err}')
return
}
println('Embeddings created successfully!')
println('Model: ${embeddings.model}')
println('Dimension: ${embeddings.dimension}')
println('Number of embeddings: ${embeddings.data.len}')
// If there are embeddings, print the first one (truncated)
if embeddings.data.len > 0 {
first_embedding := embeddings.data[0]
println('First embedding (first 5 values): ${first_embedding.embedding[0..5]}')
}
// Usage information
println('Token usage: ${embeddings.usage.total_tokens} ${embeddings.usage.unit}')
}