70 lines
1.8 KiB
GLSL
Executable File
70 lines
1.8 KiB
GLSL
Executable File
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
|
|
|
|
import freeflowuniverse.herolib.clients.jina
|
|
import freeflowuniverse.herolib.osal
|
|
import os
|
|
|
|
// Example of using the Jina client
|
|
|
|
fn main() {
|
|
// Set environment variable for testing
|
|
// In production, you would set this in your environment
|
|
// osal.env_set(key: 'JINAKEY', value: 'your-api-key')
|
|
|
|
// Check if JINAKEY environment variable exists
|
|
if !osal.env_exists('JINAKEY') {
|
|
println('JINAKEY environment variable not set. Please set it before running this example.')
|
|
exit(1)
|
|
}
|
|
|
|
// Create a Jina client instance
|
|
mut client := jina.get(name: 'default')!
|
|
|
|
println('Jina client initialized successfully.')
|
|
|
|
// Example: Create embeddings
|
|
model := 'jina-embeddings-v3'
|
|
texts := ['Hello, world!', 'How are you doing?']
|
|
|
|
println('Creating embeddings for texts: ${texts}')
|
|
result := client.create_embeddings(texts, model, 'retrieval.query')!
|
|
|
|
println('Embeddings created successfully.')
|
|
println('Model: ${result['model']}')
|
|
println('Data count: ${result['data'].arr().len}')
|
|
|
|
// Example: List classifiers
|
|
println('\nListing classifiers:')
|
|
classifiers := client.list_classifiers() or {
|
|
println('Failed to list classifiers: ${err}')
|
|
return
|
|
}
|
|
|
|
println('Classifiers retrieved successfully.')
|
|
|
|
// Example: Create a classifier
|
|
println('\nTraining a classifier:')
|
|
examples := [
|
|
jina.TrainingExample{
|
|
text: 'This movie was great!'
|
|
label: 'positive'
|
|
},
|
|
jina.TrainingExample{
|
|
text: 'I did not like this movie.'
|
|
label: 'negative'
|
|
},
|
|
jina.TrainingExample{
|
|
text: 'The movie was okay.'
|
|
label: 'neutral'
|
|
}
|
|
]
|
|
|
|
training_result := client.train(examples, model, 'private') or {
|
|
println('Failed to train classifier: ${err}')
|
|
return
|
|
}
|
|
|
|
println('Classifier trained successfully.')
|
|
println('Classifier ID: ${training_result['classifier_id']}')
|
|
}
|