sal-modular/vault/src/lib.rs

614 lines
22 KiB
Rust

//! vault: Cryptographic keyspace and operations
//! vault: Cryptographic keyspace and operations
pub mod data;
pub use crate::data::{KeyEntry, KeyMetadata, KeyType};
pub use crate::session::SessionManager;
mod crypto;
mod error;
pub mod rhai_bindings;
mod rhai_sync_helpers;
pub mod session;
mod utils;
#[cfg(target_arch = "wasm32")]
pub mod session_singleton;
#[cfg(target_arch = "wasm32")]
pub mod wasm_helpers;
use crate::crypto::kdf;
use crate::crypto::random_salt;
use data::*;
use error::VaultError;
pub use kvstore::traits::KVStore;
use crate::crypto::cipher::{decrypt_chacha20, encrypt_chacha20};
use signature::SignatureEncoding;
// TEMP: File-based debug logger for crypto troubleshooting
use log::debug;
/// Vault: Cryptographic keyspace and operations
pub struct Vault<S: KVStore> {
storage: S,
// Optionally: cache of unlocked keyspaces, etc.
}
/// Helper to encrypt and prepend nonce to ciphertext for keyspace storage
/// Helper to encrypt and prepend nonce to ciphertext for keyspace storage
/// Always uses ChaCha20Poly1305.
fn encrypt_with_nonce_prepended(key: &[u8], plaintext: &[u8]) -> Result<Vec<u8>, VaultError> {
let nonce = random_salt(12);
debug!("nonce: {}", hex::encode(&nonce));
// Always use ChaCha20Poly1305 for encryption
let ct = encrypt_chacha20(key, plaintext, &nonce).map_err(|e| VaultError::Crypto(e))?;
debug!("ct: {}", hex::encode(&ct));
debug!("key: {}", hex::encode(key));
let mut blob = nonce.clone();
blob.extend_from_slice(&ct);
debug!("ENCRYPTED (nonce|ct): {}", hex::encode(&blob));
Ok(blob)
}
impl<S: KVStore> Vault<S> {
pub fn new(storage: S) -> Self {
Self { storage }
}
/// Create a new keyspace with the given name, password, and options.
/// Create a new keyspace with the given name and password. Always uses PBKDF2 and ChaCha20Poly1305.
pub async fn create_keyspace(
&mut self,
name: &str,
password: &[u8],
tags: Option<Vec<String>>,
) -> Result<(), VaultError> {
// Check if keyspace already exists
if self
.storage
.get(name)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?
.is_some()
{
debug!("keyspace '{}' already exists", name);
return Err(VaultError::Crypto("Keyspace already exists".to_string()));
}
debug!("entry: name={}", name);
use crate::crypto::{kdf, random_salt};
use crate::data::{KeyspaceData, KeyspaceMetadata};
use serde_json;
// 1. Generate salt
let salt = random_salt(16);
debug!("salt: {:?}", salt);
// 2. Derive key
// Always use PBKDF2 for key derivation
let key = kdf::keyspace_key(password, &salt);
debug!("derived key: {} bytes", key.len());
// 3. Prepare initial keyspace data
let keyspace_data = KeyspaceData { keypairs: vec![] };
let plaintext = match serde_json::to_vec(&keyspace_data) {
Ok(val) => val,
Err(e) => {
debug!("serde_json error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
debug!("plaintext serialized: {} bytes", plaintext.len());
// 4. Generate nonce (12 bytes for both ciphers)
let nonce = random_salt(12);
debug!("nonce: {}", hex::encode(&nonce));
// 5. Encrypt
// Always use ChaCha20Poly1305 for encryption
let encrypted_blob = encrypt_with_nonce_prepended(&key, &plaintext)?;
debug!("encrypted_blob: {} bytes", encrypted_blob.len());
debug!("encrypted_blob (hex): {}", hex::encode(&encrypted_blob));
// 6. Compose metadata
let metadata = KeyspaceMetadata {
name: name.to_string(),
salt: salt.clone().try_into().unwrap_or([0u8; 16]),
encrypted_blob,
created_at: Some(crate::utils::now()),
tags,
};
// 7. Store in kvstore (keyed by keyspace name)
let meta_bytes = match serde_json::to_vec(&metadata) {
Ok(val) => val,
Err(e) => {
debug!("serde_json metadata error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
self.storage
.set(name, &meta_bytes)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
debug!("success");
// 8. Create default keypair, passing the salt we already have
self.create_default_keypair(name, password, &salt).await?;
Ok(())
}
/// List all keyspaces (metadata only, not decrypted)
pub async fn list_keyspaces(&self) -> Result<Vec<KeyspaceMetadata>, VaultError> {
use serde_json;
// 1. List all keys in kvstore
let keys = self
.storage
.keys()
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
let mut keyspaces = Vec::new();
for key in keys {
if let Some(bytes) = self
.storage
.get(&key)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?
{
if let Ok(meta) = serde_json::from_slice::<KeyspaceMetadata>(&bytes) {
keyspaces.push(meta);
}
}
}
Ok(keyspaces)
}
/// Unlock a keyspace by name and password, returning the decrypted data
/// Unlock a keyspace by name and password, returning the decrypted data
/// Always uses PBKDF2 and ChaCha20Poly1305.
pub async fn unlock_keyspace(
&self,
name: &str,
password: &[u8],
) -> Result<KeyspaceData, VaultError> {
debug!("unlock_keyspace entry: name={}", name);
// use crate::crypto::kdf; // removed if not needed
use serde_json;
// 1. Fetch keyspace metadata
let meta_bytes = self
.storage
.get(name)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
let meta_bytes = meta_bytes.ok_or(VaultError::KeyspaceNotFound(name.to_string()))?;
let metadata: KeyspaceMetadata = serde_json::from_slice(&meta_bytes)
.map_err(|e| VaultError::Serialization(e.to_string()))?;
if metadata.salt.len() != 16 {
debug!("salt length {} != 16", metadata.salt.len());
return Err(VaultError::Crypto(
"Salt length must be 16 bytes".to_string(),
));
}
// 2. Derive key
let key = kdf::keyspace_key(password, &metadata.salt);
debug!("derived key: {} bytes", key.len());
let ciphertext = &metadata.encrypted_blob;
if ciphertext.len() < 12 {
debug!("ciphertext too short: {}", ciphertext.len());
return Err(VaultError::Crypto("Ciphertext too short".to_string()));
}
let (nonce, ct) = ciphertext.split_at(12);
debug!("nonce: {}", hex::encode(nonce));
let plaintext = decrypt_chacha20(&key, ct, nonce).map_err(VaultError::Crypto)?;
debug!("plaintext decrypted: {} bytes", plaintext.len());
// 4. Deserialize keyspace data
let keyspace_data: KeyspaceData = match serde_json::from_slice(&plaintext) {
Ok(val) => val,
Err(e) => {
debug!("serde_json data error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
debug!("success");
Ok(keyspace_data)
}
/// Lock a keyspace (remove from cache, if any)
/// Lock a keyspace (remove from cache, if any)
pub fn lock_keyspace(&mut self, _name: &str) {
// Optional: clear from in-memory cache
}
// --- Keypair Management APIs ---
/// Create a default Ed25519 keypair for client identity
/// This keypair is deterministically generated from the password and salt
/// and will always be the first keypair in the keyspace
async fn create_default_keypair(
&mut self,
keyspace: &str,
password: &[u8],
salt: &[u8],
) -> Result<String, VaultError> {
// 1. Derive a deterministic seed using standard PBKDF2
let seed = kdf::keyspace_key(password, salt);
// 2. Generate Ed25519 keypair from the seed
use ed25519_dalek::{SigningKey, VerifyingKey};
// Use the seed to create a deterministic keypair
let signing = SigningKey::from_bytes(seed.as_slice().try_into().unwrap());
let verifying: VerifyingKey = (&signing).into();
let priv_bytes = signing.to_bytes().to_vec();
let pub_bytes = verifying.to_bytes().to_vec();
// Create an ID for the default keypair
let id = hex::encode(&pub_bytes);
// 3. Unlock the keyspace to get its data
let mut data = self.unlock_keyspace(keyspace, password).await?;
// 4. Add to keypairs (as the first entry)
let entry = KeyEntry {
id: id.clone(),
key_type: KeyType::Ed25519,
private_key: priv_bytes,
public_key: pub_bytes,
metadata: Some(KeyMetadata {
name: Some("Default Identity".to_string()),
created_at: Some(crate::utils::now()),
tags: Some(vec!["default".to_string(), "identity".to_string()]),
}),
};
// Ensure it's the first keypair by inserting at index 0
data.keypairs.insert(0, entry);
// 5. Re-encrypt and store
self.save_keyspace(keyspace, password, &data).await?;
Ok(id)
}
/// Add a new keypair to a keyspace (generates and stores a new keypair)
/// Add a new keypair to a keyspace (generates and stores a new keypair)
/// If key_type is None, defaults to Secp256k1.
pub async fn add_keypair(
&mut self,
keyspace: &str,
password: &[u8],
key_type: Option<KeyType>,
metadata: Option<KeyMetadata>,
) -> Result<String, VaultError> {
use crate::data::KeyEntry;
use rand_core::OsRng;
use rand_core::RngCore;
// 1. Unlock keyspace
let mut data = self.unlock_keyspace(keyspace, password).await?;
// 2. Generate keypair
let key_type = key_type.unwrap_or(KeyType::Secp256k1);
let (private_key, public_key, id) = match key_type {
KeyType::Ed25519 => {
use ed25519_dalek::{SigningKey, VerifyingKey};
let mut bytes = [0u8; 32];
OsRng.fill_bytes(&mut bytes);
let signing = SigningKey::from_bytes(&bytes);
let verifying: VerifyingKey = (&signing).into();
let priv_bytes = signing.to_bytes().to_vec();
let pub_bytes = verifying.to_bytes().to_vec();
let id = hex::encode(&pub_bytes);
(priv_bytes, pub_bytes, id)
}
KeyType::Secp256k1 => {
use k256::ecdsa::SigningKey;
let sk = SigningKey::random(&mut OsRng);
let pk = sk.verifying_key();
let priv_bytes = sk.to_bytes().to_vec();
let pub_bytes = pk.to_encoded_point(false).as_bytes().to_vec();
let id = hex::encode(&pub_bytes);
(priv_bytes, pub_bytes, id)
}
};
// 3. Add to keypairs
let entry = KeyEntry {
id: id.clone(),
key_type,
private_key,
public_key,
metadata,
};
data.keypairs.push(entry);
// 4. Re-encrypt and store
self.save_keyspace(keyspace, password, &data).await?;
Ok(id)
}
/// Remove a keypair by id from a keyspace
pub async fn remove_keypair(
&mut self,
keyspace: &str,
password: &[u8],
key_id: &str,
) -> Result<(), VaultError> {
let mut data = self.unlock_keyspace(keyspace, password).await?;
data.keypairs.retain(|k| k.id != key_id);
self.save_keyspace(keyspace, password, &data).await
}
/// List all keypairs in a keyspace (public info only)
pub async fn list_keypairs(
&self,
keyspace: &str,
password: &[u8],
) -> Result<Vec<(String, KeyType)>, VaultError> {
let data = self.unlock_keyspace(keyspace, password).await?;
Ok(data
.keypairs
.iter()
.map(|k| (k.id.clone(), k.key_type.clone()))
.collect())
}
/// Export a keypair's private and public key by id
pub async fn export_keypair(
&self,
keyspace: &str,
password: &[u8],
key_id: &str,
) -> Result<(Vec<u8>, Vec<u8>), VaultError> {
let data = self.unlock_keyspace(keyspace, password).await?;
let key = data
.keypairs
.iter()
.find(|k| k.id == key_id)
.ok_or(VaultError::KeyNotFound(key_id.to_string()))?;
Ok((key.private_key.clone(), key.public_key.clone()))
}
/// Save the updated keyspace data (helper)
async fn save_keyspace(
&mut self,
keyspace: &str,
password: &[u8],
data: &KeyspaceData,
) -> Result<(), VaultError> {
debug!("save_keyspace entry: keyspace={}", keyspace);
use crate::crypto::kdf;
use serde_json;
let meta_bytes = self
.storage
.get(keyspace)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
debug!(
"got meta_bytes: {}",
meta_bytes.as_ref().map(|v| v.len()).unwrap_or(0)
);
let meta_bytes = meta_bytes.ok_or(VaultError::KeyspaceNotFound(keyspace.to_string()))?;
let mut metadata: KeyspaceMetadata = serde_json::from_slice(&meta_bytes)
.map_err(|e| VaultError::Serialization(e.to_string()))?;
debug!("metadata: salt={:?}", metadata.salt);
if metadata.salt.len() != 16 {
debug!("salt length {} != 16", metadata.salt.len());
return Err(VaultError::Crypto(
"Salt length must be 16 bytes".to_string(),
));
}
// 2. Derive key
let key = kdf::keyspace_key(password, &metadata.salt);
debug!("derived key: {} bytes", key.len());
// 3. Serialize plaintext
let plaintext = match serde_json::to_vec(data) {
Ok(val) => val,
Err(e) => {
debug!("serde_json data error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
debug!("plaintext serialized: {} bytes", plaintext.len());
// 4. Generate nonce
let nonce = random_salt(12);
debug!("nonce: {}", hex::encode(&nonce));
// 5. Encrypt
let encrypted_blob = encrypt_with_nonce_prepended(&key, &plaintext)?;
debug!("encrypted_blob: {} bytes", encrypted_blob.len());
// 6. Store new encrypted blob
metadata.encrypted_blob = encrypted_blob;
let meta_bytes = match serde_json::to_vec(&metadata) {
Ok(val) => val,
Err(e) => {
debug!("serde_json metadata error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
self.storage
.set(keyspace, &meta_bytes)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
debug!("success");
Ok(())
}
/// Sign a message with a stored keypair in a keyspace
///
/// # Arguments
/// * `keyspace` - Keyspace name
/// * `password` - Keyspace password
/// * `key_id` - Keypair ID
/// * `message` - Message to sign
pub async fn sign(
&self,
keyspace: &str,
password: &[u8],
key_id: &str,
message: &[u8],
) -> Result<Vec<u8>, VaultError> {
let data = self.unlock_keyspace(keyspace, password).await?;
let key = data
.keypairs
.iter()
.find(|k| k.id == key_id)
.ok_or(VaultError::KeyNotFound(key_id.to_string()))?;
match key.key_type {
KeyType::Ed25519 => {
use ed25519_dalek::{Signer, SigningKey};
let signing =
SigningKey::from_bytes(&key.private_key.clone().try_into().map_err(|_| {
VaultError::Crypto("Invalid Ed25519 private key length".to_string())
})?);
let sig = signing.sign(message);
Ok(sig.to_bytes().to_vec())
}
KeyType::Secp256k1 => {
use k256::ecdsa::{signature::Signer, SigningKey};
let arr: &[u8; 32] = key.private_key.as_slice().try_into().map_err(|_| {
VaultError::Crypto("Invalid secp256k1 private key length".to_string())
})?;
let sk = SigningKey::from_bytes(arr.into())
.map_err(|e| VaultError::Crypto(e.to_string()))?;
let sig: k256::ecdsa::DerSignature = sk.sign(message);
Ok(sig.to_vec())
}
}
}
/// Verify a signature with a stored keypair in a keyspace
///
/// # Arguments
/// * `keyspace` - Keyspace name
/// * `password` - Keyspace password
/// * `key_id` - Keypair ID
/// * `message` - Message that was signed
/// * `signature` - Signature to verify
pub async fn verify(
&self,
keyspace: &str,
password: &[u8],
key_id: &str,
message: &[u8],
signature: &[u8],
) -> Result<bool, VaultError> {
let data = self.unlock_keyspace(keyspace, password).await?;
let key = data
.keypairs
.iter()
.find(|k| k.id == key_id)
.ok_or(VaultError::KeyNotFound(key_id.to_string()))?;
match key.key_type {
KeyType::Ed25519 => {
use ed25519_dalek::{Signature, Verifier, VerifyingKey};
let verifying =
VerifyingKey::from_bytes(&key.public_key.clone().try_into().map_err(|_| {
VaultError::Crypto("Invalid Ed25519 public key length".to_string())
})?)
.map_err(|e| VaultError::Crypto(e.to_string()))?;
let sig = Signature::from_bytes(&signature.try_into().map_err(|_| {
VaultError::Crypto("Invalid Ed25519 signature length".to_string())
})?);
Ok(verifying.verify(message, &sig).is_ok())
}
KeyType::Secp256k1 => {
use k256::ecdsa::{signature::Verifier, Signature, VerifyingKey};
let pk = VerifyingKey::from_sec1_bytes(&key.public_key)
.map_err(|e| VaultError::Crypto(e.to_string()))?;
let sig = Signature::from_der(signature)
.map_err(|e| VaultError::Crypto(e.to_string()))?;
Ok(pk.verify(message, &sig).is_ok())
}
}
}
/// Encrypt a message using the keyspace symmetric cipher
/// (for simplicity, uses keyspace password-derived key)
pub async fn encrypt(
&self,
keyspace: &str,
password: &[u8],
plaintext: &[u8],
) -> Result<Vec<u8>, VaultError> {
debug!("encrypt");
// 1. Load keyspace metadata
let meta_bytes = self
.storage
.get(keyspace)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
let meta_bytes = match meta_bytes {
Some(val) => val,
None => {
debug!("keyspace not found");
return Err(VaultError::Other("Keyspace not found".to_string()));
}
};
let meta: KeyspaceMetadata = match serde_json::from_slice(&meta_bytes) {
Ok(val) => val,
Err(e) => {
debug!("serialization error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
debug!(
"salt={:?} (hex salt: {})",
meta.salt,
hex::encode(&meta.salt)
);
// 2. Derive key
let key = kdf::keyspace_key(password, &meta.salt);
// 3. Generate nonce
let nonce = random_salt(12);
debug!("nonce={:?} (hex nonce: {})", nonce, hex::encode(&nonce));
// 4. Encrypt
let ciphertext = encrypt_chacha20(&key, plaintext, &nonce).map_err(VaultError::Crypto)?;
let mut out = nonce;
out.extend_from_slice(&ciphertext);
Ok(out)
}
/// Decrypt a message using the keyspace symmetric cipher
/// (for simplicity, uses keyspace password-derived key)
pub async fn decrypt(
&self,
keyspace: &str,
password: &[u8],
ciphertext: &[u8],
) -> Result<Vec<u8>, VaultError> {
debug!("decrypt");
// 1. Load keyspace metadata
let meta_bytes = self
.storage
.get(keyspace)
.await
.map_err(|e| VaultError::Storage(format!("{e:?}")))?;
let meta_bytes = match meta_bytes {
Some(val) => val,
None => {
debug!("keyspace not found");
return Err(VaultError::Other("Keyspace not found".to_string()));
}
};
let meta: KeyspaceMetadata = match serde_json::from_slice(&meta_bytes) {
Ok(val) => val,
Err(e) => {
debug!("serialization error: {}", e);
return Err(VaultError::Serialization(e.to_string()));
}
};
debug!(
"salt={:?} (hex salt: {})",
meta.salt,
hex::encode(&meta.salt)
);
// 2. Derive key
let key = kdf::keyspace_key(password, &meta.salt);
// 3. Extract nonce
let nonce = &ciphertext[..12];
debug!("nonce={:?} (hex nonce: {})", nonce, hex::encode(nonce));
// 4. Decrypt
let plaintext =
decrypt_chacha20(&key, &ciphertext[12..], nonce).map_err(VaultError::Crypto)?;
Ok(plaintext)
}
}