add cli with rhai scripting engine

This commit is contained in:
Sameh Abouelsaad 2025-05-08 11:04:08 +03:00
parent 452bae3a18
commit 0890db4810
26 changed files with 4112 additions and 20 deletions

807
CLI_IMPLEMENTATION_PLAN.md Normal file
View File

@ -0,0 +1,807 @@
# CLI and Rhai Scripting Implementation Plan
This document outlines the technical implementation plan for adding CLI and Rhai scripting capabilities to the WebAssembly Cryptography Module.
## 1. Project Structure Updates
### 1.1 Directory Structure
```
webassembly/
├── Cargo.toml (updated)
├── src/
│ ├── lib.rs (existing WebAssembly exports)
│ ├── main.rs (new CLI entry point)
│ ├── core/ (existing cryptographic core)
│ ├── api/ (existing API layer)
│ ├── cli/ (new CLI module)
│ │ ├── commands.rs
│ │ ├── config.rs
│ │ ├── error.rs
│ │ └── mod.rs
│ ├── scripting/ (new Rhai scripting module)
│ │ ├── engine.rs
│ │ ├── api.rs
│ │ ├── sandbox.rs
│ │ └── mod.rs
│ └── messaging/ (new messaging module)
│ ├── mycelium.rs (or nats.rs)
│ ├── error.rs
│ └── mod.rs
├── scripts/ (example Rhai scripts)
└── www/ (existing WebAssembly frontend)
```
### 1.2 Cargo.toml Updates
```toml
[package]
name = "webassembly"
version = "0.1.0"
edition = "2021"
authors = ["Your Name <your.email@example.com>"]
description = "Cryptographic module with CLI, Rhai scripting, and WebAssembly support"
[lib]
crate-type = ["cdylib", "rlib"]
[[bin]]
name = "crypto-cli"
path = "src/main.rs"
[dependencies]
# Existing dependencies
wasm-bindgen = "0.2"
js-sys = "0.3"
web-sys = { version = "0.3", features = ["console"] }
console_error_panic_hook = "0.1"
k256 = { version = "0.13", features = ["ecdsa", "serde"] }
chacha20poly1305 = "0.10"
rand = "0.8"
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
once_cell = "1.17"
sha2 = "0.10"
ethers = { version = "2.0", features = ["legacy"] }
# New dependencies for CLI
clap = { version = "4.3", features = ["derive"] }
colored = "2.0"
dirs = "5.0"
rustyline = "11.0"
log = "0.4"
env_logger = "0.10"
rpassword = "7.2"
# Rhai scripting
rhai = { version = "1.14", features = ["sync", "serde"] }
# Messaging system (choose one)
# Option 1: Mycelium
mycelium = "0.1"
# Option 2: NATS
async-nats = "0.29"
tokio = { version = "1.28", features = ["full"] }
[features]
default = ["cli", "wasm"]
cli = []
wasm = []
mycelium = []
nats = []
```
## 2. CLI Implementation
### 2.1 Main Entry Point (src/main.rs)
```rust
use clap::Parser;
use colored::Colorize;
use log::info;
mod core;
mod api;
mod cli;
mod scripting;
mod messaging;
use cli::{Cli, Commands};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Initialize logger
env_logger::init();
// Parse command line arguments
let cli = Cli::parse();
// Set up verbose logging if requested
if cli.verbose {
std::env::set_var("RUST_LOG", "debug");
}
// Execute the appropriate command
match &cli.command {
Commands::Key { command } => {
cli::commands::execute_key_command(command)?;
},
Commands::Crypto { command } => {
cli::commands::execute_crypto_command(command)?;
},
Commands::Ethereum { command } => {
cli::commands::execute_ethereum_command(command)?;
},
Commands::Script { path, inline } => {
let mut engine = scripting::ScriptEngine::new();
if let Some(script_path) = path {
info!("Executing script from file: {}", script_path);
engine.eval_file(script_path)?;
} else if let Some(script) = inline {
info!("Executing inline script");
engine.eval(script)?;
} else {
println!("Error: No script provided");
return Ok(());
}
},
Commands::Listen { server, subject } => {
// Implementation depends on chosen messaging system
#[cfg(feature = "mycelium")]
{
let listener = messaging::mycelium::MyceliumNetwork::new().await?;
listener.listen().await?;
}
#[cfg(feature = "nats")]
{
let listener = messaging::nats::NatsListener::new(server, subject).await?;
listener.listen().await?;
}
},
Commands::Shell => {
cli::shell::run_interactive_shell()?;
},
}
Ok(())
}
```
### 2.2 CLI Module (src/cli/mod.rs)
```rust
pub mod commands;
pub mod config;
pub mod error;
pub mod shell;
use clap::{Parser, Subcommand};
#[derive(Parser)]
#[command(name = "crypto-cli")]
#[command(about = "Cryptographic operations CLI with Rhai scripting support", long_about = None)]
pub struct Cli {
#[command(subcommand)]
pub command: Commands,
#[arg(short, long, help = "Enable verbose output")]
pub verbose: bool,
#[arg(short, long, help = "Config file path")]
pub config: Option<String>,
}
#[derive(Subcommand)]
pub enum Commands {
/// Key management commands
Key {
#[command(subcommand)]
command: KeyCommands,
},
/// Encryption/decryption commands
Crypto {
#[command(subcommand)]
command: CryptoCommands,
},
/// Ethereum wallet commands
Ethereum {
#[command(subcommand)]
command: EthereumCommands,
},
/// Execute Rhai script
Script {
#[arg(help = "Path to Rhai script file")]
path: Option<String>,
#[arg(short, long, help = "Execute script from string")]
inline: Option<String>,
},
/// Start listener for scripts
Listen {
#[arg(short, long, help = "Server URL", default_value = "localhost")]
server: String,
#[arg(short, long, help = "Subject to subscribe to", default_value = "crypto.scripts")]
subject: String,
},
/// Interactive shell
Shell,
}
// Define subcommands for each category
#[derive(Subcommand)]
pub enum KeyCommands {
// Key management commands
CreateSpace { name: String, password: Option<String> },
ListSpaces,
CreateKeypair { name: String },
ListKeypairs,
Export { name: String, output: Option<String> },
Import { name: String, input: Option<String> },
}
#[derive(Subcommand)]
pub enum CryptoCommands {
// Cryptographic operation commands
Sign { message: Option<String>, input: Option<String>, keypair: String, output: Option<String> },
Verify { message: Option<String>, input: Option<String>, signature: String, keypair: Option<String>, pubkey: Option<String> },
Encrypt { data: Option<String>, input: Option<String>, recipient: String, output: Option<String> },
Decrypt { data: Option<String>, input: Option<String>, keypair: String, output: Option<String> },
}
#[derive(Subcommand)]
pub enum EthereumCommands {
// Ethereum wallet commands
Create { keypair: String },
Address { keypair: String },
Balance { address: Option<String>, network: String },
}
```
### 2.3 CLI Error Handling (src/cli/error.rs)
```rust
use std::fmt;
use std::io;
#[derive(Debug)]
pub enum CliError {
IoError(String),
CryptoError(crate::core::error::CryptoError),
ScriptError(String),
MessagingError(String),
ConfigError(String),
NotImplemented,
}
impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CliError::IoError(msg) => write!(f, "I/O Error: {}", msg),
CliError::CryptoError(err) => write!(f, "Crypto Error: {}", err),
CliError::ScriptError(msg) => write!(f, "Script Error: {}", msg),
CliError::MessagingError(msg) => write!(f, "Messaging Error: {}", msg),
CliError::ConfigError(msg) => write!(f, "Configuration Error: {}", msg),
CliError::NotImplemented => write!(f, "Command not implemented yet"),
}
}
}
impl From<io::Error> for CliError {
fn from(err: io::Error) -> Self {
CliError::IoError(err.to_string())
}
}
impl From<crate::core::error::CryptoError> for CliError {
fn from(err: crate::core::error::CryptoError) -> Self {
CliError::CryptoError(err)
}
}
impl From<rhai::EvalAltResult> for CliError {
fn from(err: rhai::EvalAltResult) -> Self {
CliError::ScriptError(err.to_string())
}
}
```
## 3. Rhai Scripting Implementation
### 3.1 Scripting Engine (src/scripting/engine.rs)
```rust
use rhai::{Engine, AST, Scope, EvalAltResult};
use std::path::Path;
use std::fs;
use crate::scripting::api::register_crypto_api;
use crate::cli::error::CliError;
pub struct ScriptEngine {
engine: Engine,
scope: Scope<'static>,
}
impl ScriptEngine {
pub fn new() -> Self {
let mut engine = Engine::new();
// Set up sandboxing
engine.set_max_operations(100_000);
engine.set_max_modules(10);
engine.set_max_string_size(10_000);
engine.set_max_array_size(1_000);
engine.set_max_map_size(1_000);
// Disable potentially dangerous operations
engine.disable_symbol("eval");
engine.disable_symbol("source");
// Register crypto API
let mut scope = Scope::new();
register_crypto_api(&mut engine, &mut scope);
ScriptEngine { engine, scope }
}
pub fn eval_file<P: AsRef<Path>>(&mut self, path: P) -> Result<(), CliError> {
let script = fs::read_to_string(path)
.map_err(|e| CliError::IoError(format!("Failed to read script file: {}", e)))?;
self.eval(&script)
}
pub fn eval(&mut self, script: &str) -> Result<(), CliError> {
self.engine.eval_with_scope::<()>(&mut self.scope, script)
.map_err(|e| CliError::ScriptError(e.to_string()))
}
}
```
### 3.2 Scripting API (src/scripting/api.rs)
```rust
use rhai::{Engine, Scope, Dynamic, FnPtr};
use crate::api::{keypair, symmetric, ethereum};
pub fn register_crypto_api(engine: &mut Engine, scope: &mut Scope) {
// Register key space functions
engine.register_fn("create_key_space", |name: &str| -> bool {
keypair::create_space(name).is_ok()
});
engine.register_fn("encrypt_key_space", |password: &str| -> Dynamic {
match keypair::encrypt_space(password) {
Ok(encrypted) => Dynamic::from(encrypted),
Err(_) => Dynamic::UNIT,
}
});
engine.register_fn("decrypt_key_space", |encrypted: &str, password: &str| -> bool {
keypair::decrypt_space(encrypted, password).is_ok()
});
// Register keypair functions
engine.register_fn("create_keypair", |name: &str| -> bool {
keypair::create_keypair(name).is_ok()
});
engine.register_fn("select_keypair", |name: &str| -> bool {
keypair::select_keypair(name).is_ok()
});
engine.register_fn("list_keypairs", || -> Dynamic {
match keypair::list_keypairs() {
Ok(keypairs) => {
let array: Vec<Dynamic> = keypairs.into_iter()
.map(Dynamic::from)
.collect();
Dynamic::from(array)
},
Err(_) => Dynamic::from(Vec::<Dynamic>::new()),
}
});
// Register signing/verification functions
engine.register_fn("sign", |message: &str| -> Dynamic {
let message_bytes = message.as_bytes();
match keypair::sign(message_bytes) {
Ok(signature) => {
// Convert to hex string for easier handling in scripts
let hex = signature.iter()
.map(|b| format!("{:02x}", b))
.collect::<String>();
Dynamic::from(hex)
},
Err(_) => Dynamic::UNIT,
}
});
engine.register_fn("verify", |message: &str, signature_hex: &str| -> bool {
let message_bytes = message.as_bytes();
// Convert hex string back to bytes
let signature_bytes = hex_to_bytes(signature_hex);
if signature_bytes.is_empty() {
return false;
}
match keypair::verify(message_bytes, &signature_bytes) {
Ok(result) => result,
Err(_) => false,
}
});
// Register symmetric encryption functions
engine.register_fn("generate_key", || -> Dynamic {
let key = symmetric::generate_key();
let hex = key.iter()
.map(|b| format!("{:02x}", b))
.collect::<String>();
Dynamic::from(hex)
});
engine.register_fn("encrypt", |key_hex: &str, message: &str| -> Dynamic {
let key = hex_to_bytes(key_hex);
if key.is_empty() {
return Dynamic::UNIT;
}
let message_bytes = message.as_bytes();
match symmetric::encrypt(&key, message_bytes) {
Ok(ciphertext) => {
let hex = ciphertext.iter()
.map(|b| format!("{:02x}", b))
.collect::<String>();
Dynamic::from(hex)
},
Err(_) => Dynamic::UNIT,
}
});
engine.register_fn("decrypt", |key_hex: &str, ciphertext_hex: &str| -> Dynamic {
let key = hex_to_bytes(key_hex);
let ciphertext = hex_to_bytes(ciphertext_hex);
if key.is_empty() || ciphertext.is_empty() {
return Dynamic::UNIT;
}
match symmetric::decrypt(&key, &ciphertext) {
Ok(plaintext) => {
match String::from_utf8(plaintext) {
Ok(text) => Dynamic::from(text),
Err(_) => Dynamic::UNIT,
}
},
Err(_) => Dynamic::UNIT,
}
});
// Register Ethereum functions
engine.register_fn("create_ethereum_wallet", || -> bool {
ethereum::create_ethereum_wallet().is_ok()
});
engine.register_fn("get_ethereum_address", || -> Dynamic {
match ethereum::get_ethereum_address() {
Ok(address) => Dynamic::from(address),
Err(_) => Dynamic::UNIT,
}
});
}
// Helper function to convert hex string to bytes
fn hex_to_bytes(hex: &str) -> Vec<u8> {
let mut bytes = Vec::new();
let mut chars = hex.chars();
while let (Some(a), Some(b)) = (chars.next(), chars.next()) {
if let (Some(high), Some(low)) = (a.to_digit(16), b.to_digit(16)) {
bytes.push(((high << 4) | low) as u8);
} else {
return Vec::new();
}
}
bytes
}
```
## 4. Messaging System Implementation
### 4.1 Mycelium Implementation (src/messaging/mycelium.rs)
```rust
use mycelium::{Node, Identity, Message};
use std::time::Duration;
use crate::scripting::ScriptEngine;
use crate::cli::error::CliError;
pub struct MyceliumNetwork {
node: Node,
identity: Identity,
}
impl MyceliumNetwork {
pub async fn new() -> Result<Self, CliError> {
let identity = Identity::random();
let node = Node::new(identity.clone())
.map_err(|e| CliError::MessagingError(format!("Failed to create Mycelium node: {}", e)))?;
Ok(MyceliumNetwork {
node,
identity,
})
}
pub async fn listen(&self) -> Result<(), CliError> {
println!("Listening for scripts on Mycelium network");
let mut receiver = self.node.subscribe("crypto.scripts")
.map_err(|e| CliError::MessagingError(format!("Failed to subscribe: {}", e)))?;
while let Some(msg) = receiver.recv().await {
let script = String::from_utf8_lossy(&msg.payload);
println!("Received script: {}", script);
let mut engine = ScriptEngine::new();
match engine.eval(&script) {
Ok(_) => {
println!("Script executed successfully");
self.node.publish(
"crypto.results",
msg.sender.clone(),
"Script executed successfully".as_bytes().to_vec(),
).await.map_err(|e| CliError::MessagingError(format!("Failed to send result: {}", e)))?;
},
Err(e) => {
println!("Script execution failed: {}", e);
self.node.publish(
"crypto.results",
msg.sender.clone(),
format!("Script execution failed: {}", e).as_bytes().to_vec(),
).await.map_err(|e| CliError::MessagingError(format!("Failed to send result: {}", e)))?;
},
}
}
Ok(())
}
}
```
### 4.2 NATS Implementation (src/messaging/nats.rs)
```rust
use async_nats::Client;
use tokio::sync::mpsc;
use std::time::Duration;
use crate::scripting::ScriptEngine;
use crate::cli::error::CliError;
pub struct NatsListener {
client: Client,
subject: String,
}
impl NatsListener {
pub async fn new(server: &str, subject: &str) -> Result<Self, CliError> {
let client = async_nats::connect(server)
.await
.map_err(|e| CliError::MessagingError(format!("Failed to connect to NATS: {}", e)))?;
Ok(NatsListener {
client,
subject: subject.to_string(),
})
}
pub async fn listen(&self) -> Result<(), CliError> {
println!("Listening for scripts on subject: {}", self.subject);
let mut subscriber = self.client.subscribe(self.subject.clone())
.await
.map_err(|e| CliError::MessagingError(format!("Failed to subscribe: {}", e)))?;
while let Some(msg) = subscriber.next().await {
let script = String::from_utf8_lossy(&msg.payload);
println!("Received script: {}", script);
let mut engine = ScriptEngine::new();
let result = match engine.eval(&script) {
Ok(_) => {
println!("Script executed successfully");
"Script executed successfully"
},
Err(e) => {
println!("Script execution failed: {}", e);
&format!("Script execution failed: {}", e)
},
};
if let Some(reply) = msg.reply {
self.client.publish(reply, result.into())
.await
.map_err(|e| CliError::MessagingError(format!("Failed to send result: {}", e)))?;
}
}
Ok(())
}
}
```
## 5. Example Rhai Scripts
### 5.1 Key Management Script (scripts/key_management.rhai)
```rhai
// Create a key space
let space_name = "test_space";
let password = "secure_password";
print("Creating key space: " + space_name);
if create_key_space(space_name) {
print("Key space created successfully");
// Encrypt the key space
let encrypted = encrypt_key_space(password);
print("Encrypted key space: " + encrypted);
// Create a keypair
if create_keypair("test_keypair") {
print("Keypair created successfully");
// List keypairs
let keypairs = list_keypairs();
print("Available keypairs: " + keypairs);
// Select the keypair
if select_keypair("test_keypair") {
print("Keypair selected successfully");
}
}
}
```
### 5.2 Signing Script (scripts/signing.rhai)
```rhai
// Select a keypair
if select_keypair("test_keypair") {
print("Keypair selected successfully");
// Sign a message
let message = "Hello, this is a test message";
let signature = sign(message);
print("Message: " + message);
print("Signature: " + signature);
// Verify the signature
let is_valid = verify(message, signature);
print("Signature valid: " + is_valid);
}
```
### 5.3 Encryption Script (scripts/encryption.rhai)
```rhai
// Generate a symmetric key
let key = generate_key();
print("Generated key: " + key);
// Encrypt a message
let message = "This is a secret message";
let encrypted = encrypt(key, message);
print("Encrypted: " + encrypted);
// Decrypt the message
let decrypted = decrypt(key, encrypted);
print("Decrypted: " + decrypted);
// Verify the decryption worked
if decrypted == message {
print("Encryption/decryption successful!");
} else {
print("Encryption/decryption failed!");
}
```
## 6. Implementation Steps
1. **Update Cargo.toml**
- Add new dependencies
- Configure features
- Add binary target
2. **Create CLI Structure**
- Implement CLI module
- Define commands and subcommands
- Set up error handling
3. **Implement Rhai Scripting**
- Create scripting engine
- Register API functions
- Implement sandboxing
4. **Implement Messaging System**
- Choose between Mycelium and NATS
- Implement listener
- Set up script execution
5. **Create Example Scripts**
- Key management scripts
- Signing scripts
- Encryption scripts
6. **Testing**
- Unit tests for CLI commands
- Integration tests for script execution
- End-to-end tests for messaging
7. **Documentation**
- Update README.md
- Add CLI help text
- Document script API
## 7. Testing Strategy
### 7.1 Unit Tests
```rust
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cli_key_commands() {
// Test key management commands
}
#[test]
fn test_cli_crypto_commands() {
// Test cryptographic operation commands
}
#[test]
fn test_script_engine() {
// Test script execution
}
}
```
### 7.2 Integration Tests
```rust
#[cfg(test)]
mod integration_tests {
use super::*;
#[test]
fn test_script_execution() {
// Test executing a script file
}
#[test]
fn test_cli_workflow() {
// Test a complete CLI workflow
}
}
```
## 8. Conclusion
This implementation plan provides a detailed roadmap for adding CLI and Rhai scripting capabilities to the WebAssembly Cryptography Module. By following this plan, the module will be transformed into a versatile cryptographic toolkit that can operate across multiple contexts while maintaining its existing WebAssembly functionality.
The choice between Mycelium and NATS for the messaging system will depend on specific requirements for decentralization, security, and deployment complexity. Both options are included in this plan to provide flexibility.

164
CLI_README.md Normal file
View File

@ -0,0 +1,164 @@
# Crypto CLI and Rhai Scripting
This module adds CLI and Rhai scripting capabilities to the WebAssembly Cryptography Module, allowing for command-line operations and scripting of cryptographic functions.
## Features
- Command-line interface for cryptographic operations
- Interactive shell mode
- Rhai scripting engine for automation
- Key management (create, list, import, export)
- Cryptographic operations (sign, verify, encrypt, decrypt)
- Ethereum wallet integration
## Installation
Build the CLI tool using Cargo:
```bash
cargo build --release
```
The binary will be available at `target/release/crypto-cli`.
## Usage
### Command Line Interface
The CLI provides several subcommands for different operations:
#### Key Management
```bash
# Create a new key space
crypto-cli key create-space <name> [password]
# List available key spaces
crypto-cli key list-spaces
# Create a new keypair
crypto-cli key create-keypair <name>
# List available keypairs
crypto-cli key list-keypairs
# Export a keypair
crypto-cli key export <name> [output-file]
# Import a keypair
crypto-cli key import <name> [input-file]
```
#### Cryptographic Operations
```bash
# Sign a message
crypto-cli crypto sign <keypair> <message> [output-file]
# Verify a signature
crypto-cli crypto verify <signature> <message> [keypair]
# Encrypt data
crypto-cli crypto encrypt <recipient> <data> [output-file]
# Decrypt data
crypto-cli crypto decrypt <keypair> <data> [output-file]
```
#### Ethereum Operations
```bash
# Create an Ethereum wallet from a keypair
crypto-cli eth create <keypair>
# Get the Ethereum address for a keypair
crypto-cli eth address <keypair>
# Get the balance of an Ethereum address
crypto-cli eth balance <address> <network>
```
### Interactive Shell
Launch the interactive shell with:
```bash
crypto-cli shell
```
In the shell, you can run the same commands as in the CLI but without the `crypto-cli` prefix.
### Rhai Scripting
Execute Rhai scripts with:
```bash
# Execute a script file
crypto-cli script <path-to-script>
# Execute an inline script
crypto-cli script --inline "create_keypair('test'); sign('Hello, world!');"
```
## Rhai Scripting API
The Rhai scripting engine provides access to the following functions:
### Key Management
- `create_key_space(name)` - Create a new key space
- `encrypt_key_space(password)` - Encrypt the current key space
- `decrypt_key_space(encrypted, password)` - Decrypt a key space
- `create_keypair(name)` - Create a new keypair
- `select_keypair(name)` - Select a keypair for operations
- `list_keypairs()` - List available keypairs
### Cryptographic Operations
- `sign(message)` - Sign a message with the selected keypair
- `verify(message, signature)` - Verify a signature
- `generate_key()` - Generate a symmetric encryption key
- `encrypt(key, message)` - Encrypt a message with a symmetric key
- `decrypt(key, ciphertext)` - Decrypt a message with a symmetric key
### Ethereum Operations
- `create_ethereum_wallet()` - Create an Ethereum wallet
- `get_ethereum_address()` - Get the Ethereum address for the selected keypair
## Example Script
```rhai
// Create a key space and keypair
create_key_space("demo");
create_keypair("alice");
select_keypair("alice");
// Sign and verify a message
let message = "Hello, world!";
let signature = sign(message);
let is_valid = verify(message, signature);
print("Signature valid: " + is_valid);
// Symmetric encryption
let key = generate_key();
let ciphertext = encrypt(key, "Secret message");
let plaintext = decrypt(key, ciphertext);
print("Decrypted: " + plaintext);
// Ethereum operations
create_ethereum_wallet();
let address = get_ethereum_address();
print("Ethereum address: " + address);
```
## Configuration
The CLI uses a configuration file located at `~/.crypto-cli/config.json`. You can specify a different configuration file with the `--config` option.
## Verbose Mode
Use the `--verbose` flag to enable verbose output:
```bash
crypto-cli --verbose <command>

View File

@ -2,19 +2,24 @@
name = "webassembly" name = "webassembly"
version = "0.1.0" version = "0.1.0"
edition = "2024" edition = "2024"
description = "A WebAssembly module for web integration" description = "Cryptographic module with CLI, Rhai scripting, and WebAssembly support"
repository = "https://github.com/yourusername/webassembly" repository = "https://github.com/yourusername/webassembly"
license = "MIT" license = "MIT"
[lib] [lib]
crate-type = ["cdylib", "rlib"] crate-type = ["cdylib", "rlib"]
[[bin]]
name = "crypto-cli"
path = "src/main.rs"
[dependencies] [dependencies]
# Existing dependencies
wasm-bindgen = "0.2" wasm-bindgen = "0.2"
js-sys = "0.3" js-sys = "0.3"
wasm-bindgen-futures = "0.4" wasm-bindgen-futures = "0.4"
console_error_panic_hook = "0.1.7" console_error_panic_hook = "0.1.7"
k256 = { version = "0.13", features = ["ecdsa"] } k256 = { version = "0.13", features = ["ecdsa", "serde"] }
rand = { version = "0.8", features = ["getrandom"] } rand = { version = "0.8", features = ["getrandom"] }
getrandom = { version = "0.2", features = ["js"] } getrandom = { version = "0.2", features = ["js"] }
chacha20poly1305 = "0.10" chacha20poly1305 = "0.10"
@ -27,6 +32,21 @@ ethers = { version = "2.0", features = ["abigen", "legacy"] }
hex = "0.4" hex = "0.4"
idb = "0.6.4" idb = "0.6.4"
# New dependencies for CLI
clap = { version = "4.3", features = ["derive"] }
colored = "2.0"
dirs = "5.0"
rustyline = "11.0"
log = "0.4"
env_logger = "0.10"
rpassword = "7.2"
# Rhai scripting
rhai = { version = "1.14", features = ["sync", "serde"] }
# Async runtime
tokio = { version = "1.28", features = ["rt", "rt-multi-thread"] }
[dependencies.web-sys] [dependencies.web-sys]
version = "0.3" version = "0.3"
features = [ features = [
@ -40,6 +60,11 @@ features = [
"Performance" "Performance"
] ]
[features]
default = ["cli", "wasm"]
cli = []
wasm = []
[dev-dependencies] [dev-dependencies]
wasm-bindgen-test = "0.3" wasm-bindgen-test = "0.3"

30
build.sh Executable file
View File

@ -0,0 +1,30 @@
#!/bin/bash
# Build script for the Crypto CLI
# Set colors for output
GREEN='\033[0;32m'
RED='\033[0;31m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
echo -e "${YELLOW}Building Crypto CLI...${NC}"
# Build the CLI
cargo build --release
if [ $? -eq 0 ]; then
echo -e "${GREEN}Build successful!${NC}"
echo -e "Binary available at: ${YELLOW}target/release/crypto-cli${NC}"
# Create a symlink for easier access
echo -e "${YELLOW}Creating symlink...${NC}"
ln -sf "$(pwd)/target/release/crypto-cli" ./crypto-cli
echo -e "${GREEN}Done!${NC}"
echo -e "You can now run the CLI with: ${YELLOW}./crypto-cli${NC}"
echo -e "Or try the example script: ${YELLOW}./crypto-cli script examples/scripts/crypto_demo.rhai${NC}"
else
echo -e "${RED}Build failed!${NC}"
exit 1
fi

77
scripts/README.md Normal file
View File

@ -0,0 +1,77 @@
# WebAssembly Cryptography Module Scripts
This directory contains example scripts and documentation for the WebAssembly Cryptography Module's scripting and messaging capabilities.
## Directory Structure
- `rhai/`: Example Rhai scripts that demonstrate the cryptographic operations
- `examples/`: Documentation and code examples for messaging system integration
## Rhai Scripts
The `rhai/` directory contains example Rhai scripts that can be executed using the CLI:
```bash
crypto-cli script --path scripts/rhai/example.rhai
```
These scripts demonstrate how to use the cryptographic functions exposed to the Rhai scripting engine, including:
- Key space management
- Keypair operations
- Signing and verification
- Symmetric encryption and decryption
- Ethereum wallet operations
## Messaging Examples
The `examples/` directory contains documentation and code examples for integrating the WebAssembly Cryptography Module with messaging systems:
- `mycelium_example.md`: Example of using Mycelium for peer-to-peer, end-to-end encrypted messaging
- `nats_example.md`: Example of using NATS for high-performance, client-server messaging
These examples demonstrate how to:
1. Start a listener for remote script execution
2. Send scripts from remote systems
3. Process the results of script execution
4. Implement security measures for remote execution
## Creating Your Own Scripts
You can create your own Rhai scripts to automate cryptographic operations. The following functions are available in the scripting API:
### Key Space Management
- `create_key_space(name)`: Create a new key space
- `encrypt_key_space(password)`: Encrypt the current key space
- `decrypt_key_space(encrypted, password)`: Decrypt and load a key space
### Keypair Operations
- `create_keypair(name)`: Create a new keypair
- `select_keypair(name)`: Select a keypair for use
- `list_keypairs()`: List all keypairs in the current space
### Cryptographic Operations
- `sign(message)`: Sign a message with the selected keypair
- `verify(message, signature)`: Verify a signature
- `generate_key()`: Generate a symmetric key
- `encrypt(key, message)`: Encrypt a message with a symmetric key
- `decrypt(key, ciphertext)`: Decrypt a message with a symmetric key
### Ethereum Operations
- `create_ethereum_wallet()`: Create an Ethereum wallet
- `get_ethereum_address()`: Get the Ethereum address of the current wallet
## Security Considerations
When using scripts, especially with remote execution via messaging systems, consider the following security measures:
1. **Script Validation**: Validate scripts before execution to prevent malicious code
2. **Resource Limits**: Set appropriate limits on script execution to prevent denial of service
3. **Authentication**: Ensure that only authorized users or systems can execute scripts
4. **Sensitive Data**: Be careful about what data is returned in script results
5. **Encryption**: Use encrypted communication channels for remote script execution

View File

@ -0,0 +1,137 @@
# Mycelium Integration Example
This document demonstrates how to use the Mycelium messaging system with the WebAssembly Cryptography Module for remote script execution.
## Overview
Mycelium is a peer-to-peer, end-to-end encrypted messaging system that allows for secure communication between nodes. When integrated with the WebAssembly Cryptography Module, it enables remote execution of Rhai scripts, allowing for distributed cryptographic operations.
## Example Scenario
In this example, we'll demonstrate how a remote system can send a Rhai script to the cryptographic module for execution, and receive the results.
### Step 1: Start the Listener
First, start the cryptographic module's Mycelium listener:
```bash
crypto-cli listen
```
This will start a Mycelium node that listens for scripts on the "crypto.scripts" topic.
### Step 2: Send a Script from a Remote System
From another system, send a Rhai script to the listener:
```rust
use mycelium::{Node, Identity};
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a Mycelium node
let identity = Identity::random();
let node = Node::new(identity)?;
// Connect to the network
node.start().await?;
// Define the script to execute
let script = r#"
// Create a key space
if create_key_space("remote_space") {
print("Key space created successfully");
// Create a keypair
if create_keypair("remote_keypair") {
print("Keypair created successfully");
// Select the keypair
if select_keypair("remote_keypair") {
print("Keypair selected successfully");
// Sign a message
let message = "Hello from remote system";
let signature = sign(message);
print("Message: " + message);
print("Signature: " + signature);
// Return the signature as the result
signature
} else {
"Failed to select keypair"
}
} else {
"Failed to create keypair"
}
} else {
"Failed to create key space"
}
"#;
// Send the script to the crypto module
println!("Sending script to crypto module...");
let target_id = "RECIPIENT_ID"; // The ID of the crypto module's Mycelium node
node.publish("crypto.scripts", target_id, script.as_bytes().to_vec()).await?;
// Subscribe to receive the result
let mut receiver = node.subscribe("crypto.results").await?;
// Wait for the result
println!("Waiting for result...");
if let Some(msg) = receiver.recv().await {
let result = String::from_utf8_lossy(&msg.payload);
println!("Received result: {}", result);
}
Ok(())
}
```
### Step 3: Process the Result
The remote system can then process the result of the script execution:
```rust
// Continue from the previous example...
// Parse the signature from the result
let signature_hex = result.trim();
// Use the signature for further operations
println!("Signature received: {}", signature_hex);
// Verify the signature locally
let message = "Hello from remote system";
let message_bytes = message.as_bytes();
let signature_bytes = hex_to_bytes(signature_hex);
// Assuming we have the public key of the remote keypair
let is_valid = verify_with_public_key(public_key, message_bytes, &signature_bytes);
println!("Signature valid: {}", is_valid);
```
## Security Considerations
When using Mycelium for remote script execution, consider the following security measures:
1. **Authentication**: Ensure that only authorized nodes can send scripts to your crypto module.
2. **Script Validation**: Validate scripts before execution to prevent malicious code.
3. **Resource Limits**: Set appropriate limits on script execution to prevent denial of service.
4. **Sensitive Data**: Be careful about what data is returned in script results.
5. **End-to-End Encryption**: Mycelium provides end-to-end encryption, but ensure your node IDs are properly secured.
## Benefits of Mycelium Integration
- **Decentralized**: No central server required, making the system more resilient.
- **End-to-End Encrypted**: All communication is encrypted by default.
- **NAT Traversal**: Works across different network environments without complex configuration.
- **Rust Native**: Seamless integration with the WebAssembly Cryptography Module.
## Example Use Cases
1. **Distributed Key Management**: Manage cryptographic keys across multiple systems.
2. **Secure Communication**: Establish secure communication channels between systems.
3. **Remote Signing**: Sign messages or transactions remotely without exposing private keys.
4. **Automated Cryptographic Operations**: Schedule and execute cryptographic operations from remote systems.

View File

@ -0,0 +1,156 @@
# NATS Integration Example
This document demonstrates how to use the NATS messaging system with the WebAssembly Cryptography Module for remote script execution.
## Overview
NATS is a high-performance, cloud-native messaging system that provides a simple, secure, and scalable communication layer. When integrated with the WebAssembly Cryptography Module, it enables remote execution of Rhai scripts, allowing for distributed cryptographic operations.
## Example Scenario
In this example, we'll demonstrate how a remote system can send a Rhai script to the cryptographic module for execution, and receive the results.
### Step 1: Start the NATS Server
First, start a NATS server:
```bash
# Install NATS server if not already installed
# For example, on Ubuntu:
# sudo apt-get install nats-server
# Start the NATS server
nats-server
```
### Step 2: Start the Listener
Next, start the cryptographic module's NATS listener:
```bash
crypto-cli listen --server nats://localhost:4222 --subject crypto.scripts
```
This will connect to the NATS server and listen for scripts on the "crypto.scripts" subject.
### Step 3: Send a Script from a Remote System
From another system, send a Rhai script to the listener:
```rust
use async_nats::Client;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Connect to the NATS server
let client = async_nats::connect("nats://localhost:4222").await?;
// Define the script to execute
let script = r#"
// Create a key space
if create_key_space("remote_space") {
print("Key space created successfully");
// Create a keypair
if create_keypair("remote_keypair") {
print("Keypair created successfully");
// Select the keypair
if select_keypair("remote_keypair") {
print("Keypair selected successfully");
// Sign a message
let message = "Hello from remote system";
let signature = sign(message);
print("Message: " + message);
print("Signature: " + signature);
// Return the signature as the result
signature
} else {
"Failed to select keypair"
}
} else {
"Failed to create keypair"
}
} else {
"Failed to create key space"
}
"#;
// Send the script to the crypto module with a reply subject
println!("Sending script to crypto module...");
let reply = client.request("crypto.scripts", script.into()).await?;
// Process the reply
let result = String::from_utf8_lossy(&reply.payload);
println!("Received result: {}", result);
Ok(())
}
```
### Step 4: Process the Result
The remote system can then process the result of the script execution:
```rust
// Continue from the previous example...
// Parse the signature from the result
let signature_hex = result.trim();
// Use the signature for further operations
println!("Signature received: {}", signature_hex);
// Verify the signature locally
let message = "Hello from remote system";
let message_bytes = message.as_bytes();
let signature_bytes = hex_to_bytes(signature_hex);
// Assuming we have the public key of the remote keypair
let is_valid = verify_with_public_key(public_key, message_bytes, &signature_bytes);
println!("Signature valid: {}", is_valid);
```
## Security Considerations
When using NATS for remote script execution, consider the following security measures:
1. **TLS**: Configure NATS to use TLS for secure communication.
2. **Authentication**: Set up user authentication for the NATS server.
3. **Authorization**: Configure permissions to control which clients can publish/subscribe to which subjects.
4. **Script Validation**: Validate scripts before execution to prevent malicious code.
5. **Resource Limits**: Set appropriate limits on script execution to prevent denial of service.
6. **Sensitive Data**: Be careful about what data is returned in script results.
## Benefits of NATS Integration
- **High Performance**: NATS is designed for high throughput and low latency.
- **Scalability**: NATS can scale to handle millions of messages per second.
- **Mature Ecosystem**: NATS has a mature ecosystem with clients for many languages.
- **Flexible Deployment**: NATS can be deployed in various configurations, from a single server to a distributed cluster.
- **Quality of Service**: NATS supports different quality of service levels, including at-most-once, at-least-once, and exactly-once delivery.
## Example Use Cases
1. **Centralized Key Management**: Manage cryptographic keys from a central service.
2. **Secure API**: Provide a secure API for cryptographic operations.
3. **Remote Signing Service**: Offer signing as a service without exposing private keys.
4. **Automated Cryptographic Operations**: Schedule and execute cryptographic operations from remote systems.
## Comparison with Mycelium
| Feature | NATS | Mycelium |
|---------|------|----------|
| Architecture | Client-server | Peer-to-peer |
| Deployment | Requires server setup | No central server needed |
| Security | TLS, authentication, authorization | End-to-end encryption by default |
| Performance | Optimized for high throughput | Good for P2P scenarios |
| Maturity | Established project | Newer project |
| Documentation | Extensive | Limited |
| Language Support | Multiple language clients | Rust native |
| NAT Traversal | Requires configuration | Built-in |
Choose NATS if you prefer a centralized, high-performance messaging system with extensive documentation and language support. Choose Mycelium if you prefer a decentralized, peer-to-peer approach with built-in end-to-end encryption and NAT traversal.

57
scripts/rhai/README.md Normal file
View File

@ -0,0 +1,57 @@
# Rhai Scripting for WebAssembly Cryptography Module
This directory contains example Rhai scripts that demonstrate how to use the WebAssembly Cryptography Module's scripting capabilities.
## Key Space Persistence
The Rhai API now supports key space persistence, allowing you to create key spaces and keypairs in one script and use them in another. This is achieved through the following functions:
### Key Space Management Functions
- `load_key_space(name, password)`: Loads a key space from disk by name and decrypts it with the provided password.
- `create_key_space(name, password)`: Creates a new key space with the given name and automatically saves it to disk encrypted with the provided password.
- `encrypt_key_space(password)`: Encrypts the current key space and returns the encrypted data as a string.
- `decrypt_key_space(encrypted_data, password)`: Decrypts an encrypted key space and sets it as the current key space.
### Example Usage
```rhai
// Create a key space (automatically saves to disk)
let space_name = "my_space";
let password = "secure_password";
if create_key_space(space_name, password) {
// Create keypairs (automatically saves to disk)
create_keypair("my_keypair", password);
}
// Later, in another script:
if load_key_space(space_name, password) {
// Use the keypair
select_keypair("my_keypair");
let signature = sign("Hello, world!");
}
```
## Example Scripts
1. **example.rhai**: Basic example demonstrating key management, signing, and encryption.
2. **advanced_example.rhai**: Advanced example with error handling and more complex operations.
3. **key_persistence_example.rhai**: Demonstrates creating and saving a key space to disk.
4. **load_existing_space.rhai**: Shows how to load a previously created key space and use its keypairs.
## Key Space Storage
Key spaces are stored in the `~/.crypto-cli/key-spaces/` directory by default. Each key space is stored in a separate JSON file named after the key space (e.g., `my_space.json`).
## Security
Key spaces are encrypted with ChaCha20Poly1305 using a key derived from the provided password. The encryption ensures that the key material is secure at rest.
## Best Practices
1. **Use Strong Passwords**: Since the security of your key spaces depends on the strength of your passwords, use strong, unique passwords.
2. **Backup Key Spaces**: Regularly backup your key spaces directory to prevent data loss.
3. **Script Organization**: Split your scripts into logical units, with separate scripts for key creation and key usage.
4. **Error Handling**: Always check the return values of functions to ensure operations succeeded before proceeding.

View File

@ -0,0 +1,233 @@
// Advanced Rhai script example for WebAssembly Cryptography Module
// This script demonstrates conditional logic, error handling, and more complex operations
// Function to create a key space with error handling
fn setup_key_space(name, password) {
print("Attempting: Create key space: " + name);
let result = create_key_space(name, password);
if result {
print("✅ Create key space succeeded!");
return true;
} else {
print("❌ Create key space failed!");
}
return false;
}
// Function to create and select a keypair
fn setup_keypair(name, password) {
print("Attempting: Create keypair: " + name);
let result = create_keypair(name, password);
if result {
print("✅ Create keypair succeeded!");
print("Attempting: Select keypair: " + name);
let selected = select_keypair(name);
if selected {
print("✅ Select keypair succeeded!");
return true;
} else {
print("❌ Select keypair failed!");
}
} else {
print("❌ Create keypair failed!");
}
return false;
}
// Function to sign multiple messages
fn sign_messages(messages) {
let signatures = [];
for message in messages {
print("Signing message: " + message);
print("Attempting: Sign message");
let signature = sign(message);
if signature != "" {
print("✅ Sign message succeeded!");
signatures.push(#{
message: message,
signature: signature
});
} else {
print("❌ Sign message failed!");
}
}
return signatures;
}
// Function to verify signatures
fn verify_signatures(signed_messages) {
let results = [];
for item in signed_messages {
let message = item.message;
let signature = item.signature;
print("Verifying signature for: " + message);
print("Attempting: Verify signature");
let is_valid = verify(message, signature);
if is_valid {
print("✅ Verify signature succeeded!");
} else {
print("❌ Verify signature failed!");
}
results.push(#{
message: message,
valid: is_valid
});
}
return results;
}
// Function to encrypt multiple messages
fn encrypt_messages(messages) {
// Generate a symmetric key
print("Attempting: Generate symmetric key");
let key = generate_key();
if key == "" {
print("❌ Generate symmetric key failed!");
return [];
}
print("✅ Generate symmetric key succeeded!");
print("Using key: " + key);
let encrypted_messages = [];
for message in messages {
print("Encrypting message: " + message);
print("Attempting: Encrypt message");
let encrypted = encrypt(key, message);
if encrypted != "" {
print("✅ Encrypt message succeeded!");
encrypted_messages.push(#{
original: message,
encrypted: encrypted,
key: key
});
} else {
print("❌ Encrypt message failed!");
}
}
return encrypted_messages;
}
// Function to decrypt messages
fn decrypt_messages(encrypted_messages) {
let decrypted_messages = [];
for item in encrypted_messages {
let encrypted = item.encrypted;
let key = item.key;
let original = item.original;
print("Decrypting message...");
print("Attempting: Decrypt message");
let decrypted = decrypt(key, encrypted);
if decrypted != false {
let success = decrypted == original;
decrypted_messages.push(#{
decrypted: decrypted,
original: original,
success: success
});
if success {
print("Decryption matched original ✅");
} else {
print("Decryption did not match original ❌");
}
}
}
return decrypted_messages;
}
// Main script execution
print("=== Advanced Cryptography Script ===");
// Set up key space
let space_name = "advanced_space";
let password = "secure_password123";
if setup_key_space(space_name, password) {
print("\n--- Key space setup complete ---\n");
// Set up keypair
if setup_keypair("advanced_keypair", password) {
print("\n--- Keypair setup complete ---\n");
// Define messages to sign
let messages = [
"This is the first message to sign",
"Here's another message that needs signing",
"And a third message for good measure"
];
// Sign messages
print("\n--- Signing Messages ---\n");
let signed_messages = sign_messages(messages);
// Verify signatures
print("\n--- Verifying Signatures ---\n");
let verification_results = verify_signatures(signed_messages);
// Count successful verifications
let successful_verifications = verification_results.filter(|r| r.valid).len();
print("Successfully verified " + successful_verifications + " out of " + verification_results.len() + " signatures");
// Encrypt messages
print("\n--- Encrypting Messages ---\n");
let encrypted_messages = encrypt_messages(messages);
// Decrypt messages
print("\n--- Decrypting Messages ---\n");
let decryption_results = decrypt_messages(encrypted_messages);
// Count successful decryptions
let successful_decryptions = decryption_results.filter(|r| r.success).len();
print("Successfully decrypted " + successful_decryptions + " out of " + decryption_results.len() + " messages");
// Create Ethereum wallet
print("\n--- Creating Ethereum Wallet ---\n");
print("Attempting: Create Ethereum wallet");
let wallet_created = create_ethereum_wallet();
if wallet_created {
print("✅ Create Ethereum wallet succeeded!");
print("Attempting: Get Ethereum address");
let address = get_ethereum_address();
if address != "" {
print("✅ Get Ethereum address succeeded!");
print("Ethereum wallet address: " + address);
} else {
print("❌ Get Ethereum address failed!");
}
} else {
print("❌ Create Ethereum wallet failed!");
}
print("\n=== Script execution completed successfully! ===");
} else {
print("Failed to set up keypair. Aborting script.");
}
} else {
print("Failed to set up key space. Aborting script.");
}

85
scripts/rhai/example.rhai Normal file
View File

@ -0,0 +1,85 @@
// Example Rhai script for WebAssembly Cryptography Module
// This script demonstrates key management, signing, and encryption
// Step 1: Create and manage a key space
let space_name = "demo_space";
let password = "secure_password123";
print("Creating key space: " + space_name);
if create_key_space(space_name, password) {
print("✓ Key space created successfully");
// Step 2: Create and use keypairs
print("\nCreating keypairs...");
if create_keypair("signing_key", password) {
print("✓ Created signing keypair");
}
if create_keypair("encryption_key", password) {
print("✓ Created encryption keypair");
}
// List all keypairs
let keypairs = list_keypairs();
print("Available keypairs: " + keypairs);
// Step 3: Sign a message
print("\nPerforming signing operations...");
if select_keypair("signing_key") {
print("✓ Selected signing keypair");
let message = "This is a secure message that needs to be signed";
print("Message: " + message);
let signature = sign(message);
print("Signature: " + signature);
// Verify the signature
let is_valid = verify(message, signature);
if is_valid {
print("Signature verification: ✓ Valid");
} else {
print("Signature verification: ✗ Invalid");
}
}
// Step 4: Encrypt and decrypt data
print("\nPerforming encryption operations...");
// Generate a symmetric key
let sym_key = generate_key();
print("Generated symmetric key: " + sym_key);
// Encrypt a message
let secret = "This is a top secret message that must be encrypted";
print("Original message: " + secret);
let encrypted_data = encrypt(sym_key, secret);
print("Encrypted data: " + encrypted_data);
// Decrypt the message
let decrypted_data = decrypt(sym_key, encrypted_data);
print("Decrypted message: " + decrypted_data);
// Verify decryption was successful
if decrypted_data == secret {
print("✓ Encryption/decryption successful");
} else {
print("✗ Encryption/decryption failed");
}
// Step 5: Create an Ethereum wallet
print("\nCreating Ethereum wallet...");
if select_keypair("encryption_key") {
print("✓ Selected keypair for Ethereum wallet");
if create_ethereum_wallet() {
print("✓ Ethereum wallet created");
let address = get_ethereum_address();
print("Ethereum address: " + address);
}
}
print("\nScript execution completed successfully!");
}

View File

@ -0,0 +1,65 @@
// Example Rhai script demonstrating key space persistence
// This script shows how to create, save, and load key spaces
// Step 1: Create a key space
let space_name = "persistent_space";
let password = "secure_password123";
print("Creating key space: " + space_name);
if create_key_space(space_name, password) {
print("✓ Key space created successfully");
// Step 2: Create keypairs in this space
print("\nCreating keypairs...");
if create_keypair("persistent_key1", password) {
print("✓ Created first keypair");
}
if create_keypair("persistent_key2", password) {
print("✓ Created second keypair");
}
// List all keypairs
let keypairs = list_keypairs();
print("Available keypairs: " + keypairs);
// Step 3: Clear the session (simulate closing and reopening the CLI)
print("\nClearing session (simulating restart)...");
// Note: In a real script, you would exit here and run a new script
// For demonstration purposes, we'll continue in the same script
// Step 4: Load the key space from disk
print("\nLoading key space from disk...");
if load_key_space(space_name, password) {
print("✓ Key space loaded successfully");
// Verify the keypairs are still available
let loaded_keypairs = list_keypairs();
print("Keypairs after loading: " + loaded_keypairs);
// Step 5: Use a keypair from the loaded space
print("\nSelecting and using a keypair...");
if select_keypair("persistent_key1") {
print("✓ Selected keypair");
let message = "This message was signed using a keypair from a loaded key space";
let signature = sign(message);
print("Message: " + message);
print("Signature: " + signature);
// Verify the signature
let is_valid = verify(message, signature);
if is_valid {
print("Signature verification: ✓ Valid");
} else {
print("Signature verification: ✗ Invalid");
}
}
} else {
print("✗ Failed to load key space");
}
} else {
print("✗ Failed to create key space");
}
print("\nScript execution completed!");

View File

@ -0,0 +1,65 @@
// Example Rhai script demonstrating loading an existing key space
// This script shows how to load a previously created key space and use its keypairs
// Define the key space name and password
let space_name = "persistent_space";
let password = "secure_password123";
print("Loading existing key space: " + space_name);
// Load the key space from disk
if load_key_space(space_name, password) {
print("✓ Key space loaded successfully");
// List available keypairs
let keypairs = list_keypairs();
print("Available keypairs: " + keypairs);
// Use both keypairs to sign different messages
if select_keypair("persistent_key1") {
print("\nUsing persistent_key1:");
let message1 = "Message signed with the first keypair";
let signature1 = sign(message1);
print("Message: " + message1);
print("Signature: " + signature1);
let is_valid1 = verify(message1, signature1);
if is_valid1 {
print("Verification: ✓ Valid");
} else {
print("Verification: ✗ Invalid");
}
}
if select_keypair("persistent_key2") {
print("\nUsing persistent_key2:");
let message2 = "Message signed with the second keypair";
let signature2 = sign(message2);
print("Message: " + message2);
print("Signature: " + signature2);
let is_valid2 = verify(message2, signature2);
if is_valid2 {
print("Verification: ✓ Valid");
} else {
print("Verification: ✗ Invalid");
}
}
// Create an Ethereum wallet using one of the keypairs
print("\nCreating Ethereum wallet from persistent keypair:");
if select_keypair("persistent_key1") {
if create_ethereum_wallet() {
print("✓ Ethereum wallet created");
let address = get_ethereum_address();
print("Ethereum address: " + address);
} else {
print("✗ Failed to create Ethereum wallet");
}
}
} else {
print("✗ Failed to load key space. Make sure you've run key_persistence_example.rhai first.");
}
print("\nScript execution completed!");

103
scripts/run_examples.sh Executable file
View File

@ -0,0 +1,103 @@
#!/bin/bash
# Script to run the example Rhai scripts and demonstrate the WebAssembly Cryptography Module
# Colors for output
GREEN='\033[0;32m'
BLUE='\033[0;34m'
RED='\033[0;31m'
YELLOW='\033[1;33m'
NC='\033[0m' # No Color
# Function to print section headers
print_header() {
echo -e "\n${BLUE}======================================${NC}"
echo -e "${BLUE}$1${NC}"
echo -e "${BLUE}======================================${NC}\n"
}
# Function to run a Rhai script
run_script() {
echo -e "${YELLOW}Running script: $1${NC}"
echo -e "${YELLOW}------------------------${NC}"
if [ -f "$1" ]; then
echo -e "${GREEN}Script output:${NC}"
crypto-cli script "$1"
echo -e "\n${GREEN}Script execution completed.${NC}"
else
echo -e "${RED}Error: Script file not found: $1${NC}"
fi
}
# Check if crypto-cli is installed
if ! command -v crypto-cli &> /dev/null; then
echo -e "${RED}Error: crypto-cli is not installed or not in PATH.${NC}"
echo -e "${YELLOW}Please build and install the CLI first:${NC}"
echo -e " cargo build --bin crypto-cli"
echo -e " cargo install --path ."
exit 1
fi
# Print welcome message
print_header "WebAssembly Cryptography Module Examples"
echo -e "This script will run the example Rhai scripts to demonstrate the functionality of the WebAssembly Cryptography Module."
echo -e "Make sure you have built and installed the CLI before running this script.\n"
# Ask user which example to run
echo -e "${YELLOW}Which example would you like to run?${NC}"
echo -e "1. Basic example (key management, signing, encryption)"
echo -e "2. Advanced example (error handling, multiple operations)"
echo -e "3. Multi-script workflows (chaining scripts)"
echo -e "4. Run all examples"
echo -e "5. Exit"
read -p "Enter your choice (1-4): " choice
case $choice in
1)
print_header "Running Basic Example"
run_script "scripts/rhai/example.rhai"
;;
2)
print_header "Running Advanced Example"
run_script "scripts/rhai/advanced_example.rhai"
;;
3)
print_header "Running Multi-Script Workflows"
run_script "scripts/rhai/key_persistence_example.rhai"
echo -e "\n"
run_script "scripts/rhai/load_existing_space.rhai"
;;
4)
print_header "Running All Examples"
run_script "scripts/rhai/example.rhai"
echo -e "\n"
run_script "scripts/rhai/advanced_example.rhai"
echo -e "\n"
run_script "scripts/rhai/key_persistence_example.rhai"
echo -e "\n"
run_script "scripts/rhai/load_existing_space.rhai"
;;
5)
echo -e "${YELLOW}Exiting...${NC}"
exit 0
;;
*)
echo -e "${RED}Invalid choice. Exiting...${NC}"
exit 1
;;
esac
# Print information about messaging examples
print_header "Messaging System Examples"
echo -e "To try the messaging system examples, you can:"
echo -e "1. Start a listener for remote script execution:"
echo -e " ${YELLOW}crypto-cli listen${NC}"
echo -e ""
echo -e "2. For Mycelium integration, see:"
echo -e " ${YELLOW}scripts/examples/mycelium_example.md${NC}"
echo -e ""
echo -e "3. For NATS integration, see:"
echo -e " ${YELLOW}scripts/examples/nats_example.md${NC}"
echo -e "\n${GREEN}Thank you for trying the WebAssembly Cryptography Module examples!${NC}"

View File

@ -0,0 +1,66 @@
use webassembly::core::keypair::{KeySpace, KeyPair};
use webassembly::core::symmetric;
use std::fs;
use serde_json;
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create a key space
let mut space = KeySpace::new("test-space");
// Add a keypair
let keypair = KeyPair::new("test-keypair");
space.keypairs.insert("test-keypair".to_string(), keypair);
// Print the key space
println!("Key space: {:?}", space);
// Serialize the key space directly to see what it looks like
let direct_serialized = serde_json::to_string_pretty(&space)?;
println!("Direct serialized key space:\n{}", direct_serialized);
// Encrypt the key space
let password = "test123";
let encrypted_space = symmetric::encrypt_key_space(&space, password)?;
// Serialize the encrypted space
let serialized = symmetric::serialize_encrypted_space(&encrypted_space)?;
// Write to file
fs::write("test_keyspace.json", &serialized)?;
println!("Wrote encrypted key space to test_keyspace.json");
// Read from file
let serialized = fs::read_to_string("test_keyspace.json")?;
// Deserialize the encrypted space
let encrypted_space = symmetric::deserialize_encrypted_space(&serialized)?;
println!("Deserialized encrypted space: {:?}", encrypted_space.metadata);
// Decrypt the key space
let decrypted_data = symmetric::decrypt_symmetric(
&symmetric::derive_key_from_password(password),
&encrypted_space.encrypted_data
)?;
println!("Decrypted data length: {}", decrypted_data.len());
println!("Decrypted data preview: {:?}", &decrypted_data[..20]);
// Try to deserialize manually
match serde_json::from_slice::<KeySpace>(&decrypted_data) {
Ok(space) => {
println!("Manual deserialization successful!");
println!("Decrypted key space: {:?}", space);
println!("Keypairs: {:?}", space.list_keypairs());
},
Err(e) => {
println!("Manual deserialization error: {}", e);
// Try to print the decrypted data as a string to see what's wrong
match std::str::from_utf8(&decrypted_data) {
Ok(s) => println!("Decrypted data as string: {}", s),
Err(_) => println!("Decrypted data is not valid UTF-8"),
}
}
}
Ok(())
}

772
src/cli/commands.rs Normal file
View File

@ -0,0 +1,772 @@
use colored::Colorize;
use std::fs;
use std::io::{self, Read, Write};
use std::path::Path;
use crate::cli::error::{CliError, Result};
use crate::cli::{CryptoCommands, EthereumCommands, KeyCommands};
use webassembly::core::keypair;
use webassembly::core::symmetric;
use webassembly::core::ethereum;
use webassembly::core::error::CryptoError;
// Load a key space from disk
fn load_key_space(name: &str, password: &str) -> Result<()> {
// Load config to get key spaces directory
let config = crate::cli::config::Config::default();
// Check if directory exists
if !config.key_spaces_dir.exists() {
return Err(CliError::ConfigError("Key spaces directory does not exist".to_string()));
}
// Get the key space file path
let space_path = config.key_spaces_dir.join(format!("{}.json", name));
// Check if file exists
if !space_path.exists() {
return Err(CliError::ConfigError(format!("Key space file not found: {}", space_path.display())));
}
// Read the file
let serialized = fs::read_to_string(&space_path)?;
// Deserialize the encrypted space
let encrypted_space = match symmetric::deserialize_encrypted_space(&serialized) {
Ok(space) => space,
Err(e) => {
println!("Error deserializing key space: {}", e);
return Err(CliError::CryptoError(format!("Failed to deserialize key space: {}", e)));
}
};
// Decrypt the space
let space = match symmetric::decrypt_key_space(&encrypted_space, password) {
Ok(space) => space,
Err(e) => {
println!("Error decrypting key space: {}", e);
return Err(CliError::CryptoError(format!("Failed to decrypt key space: {}", e)));
}
};
// Set as current space
keypair::set_current_space(space)?;
Ok(())
}
// Execute key management commands
pub fn execute_key_command(command: &KeyCommands) -> Result<()> {
match command {
KeyCommands::Load { name, password } => {
println!("Loading key space: {}", name);
// Get password
let pwd = match password {
Some(p) => p.clone(),
None => {
println!("Enter password for key space {}:", name);
rpassword::read_password()?
}
};
// Load the key space
load_key_space(name, &pwd)?;
println!("{}", "Key space loaded successfully".green());
Ok(())
},
KeyCommands::CreateSpace { name, password } => {
println!("Creating key space: {}", name);
// Create the key space
keypair::create_space(name)?;
// Get the current space
let space = keypair::get_current_space()?;
// Encrypt the key space with the provided password
let encrypted_space = symmetric::encrypt_key_space(&space, &password)?;
// Load config to get key spaces directory
let config = crate::cli::config::Config::default();
config.ensure_key_spaces_dir()?;
// Store the encrypted space to disk
let space_path = config.key_spaces_dir.join(format!("{}.json", name));
let serialized = symmetric::serialize_encrypted_space(&encrypted_space)?;
fs::write(&space_path, serialized)?;
println!("Key space encrypted with password and saved to {}", space_path.display());
println!("{}", "Key space created successfully".green());
Ok(())
},
KeyCommands::ListSpaces => {
println!("Listing key spaces:");
// Load config to get key spaces directory
let config = crate::cli::config::Config::default();
// Check if directory exists
if !config.key_spaces_dir.exists() {
println!("No key spaces found (directory does not exist)");
return Ok(());
}
// List all space files
let mut spaces_found = false;
for entry in fs::read_dir(&config.key_spaces_dir)? {
let entry = entry?;
let path = entry.path();
if path.is_file() && path.extension().map_or(false, |ext| ext == "json") {
if let Some(name) = path.file_stem() {
println!("- {}", name.to_string_lossy());
spaces_found = true;
}
}
}
if !spaces_found {
println!("No key spaces found in {}", config.key_spaces_dir.display());
}
// Show the current space if it exists
match keypair::get_current_space() {
Ok(space) => {
println!("\nCurrent active space: {}", space.name.green());
},
Err(_) => {
println!("\nNo active key space");
}
}
Ok(())
},
KeyCommands::CreateKeypair { name, space, password } => {
println!("Creating keypair: {}", name);
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
// If space is provided, try to load it
if let Some(space_name) = space {
// Get password
let pwd = match password {
Some(p) => p.clone(),
None => {
println!("Enter password for key space {}:", space_name);
rpassword::read_password()?
}
};
// Load the key space
load_key_space(&space_name, &pwd)?;
println!("Loaded key space: {}", space_name);
} else {
// Try to load the default space
println!("No active key space. Enter the name of the key space to use:");
let mut space_name = String::new();
io::stdin().read_line(&mut space_name)?;
space_name = space_name.trim().to_string();
println!("Enter password for key space {}:", space_name);
let pwd = rpassword::read_password()?;
// Load the key space
load_key_space(&space_name, &pwd)?;
println!("Loaded key space: {}", space_name);
}
}
// Create the keypair in the current space
keypair::create_keypair(name)?;
// Save the key space to disk
let space = keypair::get_current_space()?;
// Get the space name
let space_name = space.name.clone();
// Get password
let pwd = match password {
Some(p) => p.clone(),
None => {
println!("Enter password for key space {}:", space_name);
rpassword::read_password()?
}
};
// Encrypt the key space
let encrypted_space = symmetric::encrypt_key_space(&space, &pwd)?;
// Load config to get key spaces directory
let config = crate::cli::config::Config::default();
config.ensure_key_spaces_dir()?;
// Store the encrypted space to disk
let space_path = config.key_spaces_dir.join(format!("{}.json", space_name));
let serialized = symmetric::serialize_encrypted_space(&encrypted_space)?;
fs::write(&space_path, serialized)?;
println!("Key space saved to {}", space_path.display());
println!("{}", "Keypair created successfully".green());
Ok(())
},
KeyCommands::ListKeypairs { space, password } => {
println!("Listing keypairs:");
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
// If space is provided, try to load it
if let Some(space_name) = space {
// Get password
let pwd = match password {
Some(p) => p.clone(),
None => {
println!("Enter password for key space {}:", space_name);
rpassword::read_password()?
}
};
// Load the key space
match load_key_space(&space_name, &pwd) {
Ok(_) => println!("Loaded key space: {}", space_name),
Err(e) => {
println!("Error loading key space: {}", e);
return Err(e);
}
}
} else {
// Try to load the default space
println!("No active key space. Enter the name of the key space to use:");
let mut space_name = String::new();
io::stdin().read_line(&mut space_name)?;
space_name = space_name.trim().to_string();
println!("Enter password for key space {}:", space_name);
let pwd = rpassword::read_password()?;
// Load the key space
match load_key_space(&space_name, &pwd) {
Ok(_) => println!("Loaded key space: {}", space_name),
Err(e) => {
println!("Error loading key space: {}", e);
return Err(e);
}
}
}
}
// Get the current space
let space = match keypair::get_current_space() {
Ok(s) => s,
Err(e) => {
println!("Error getting current key space: {}", e);
return Err(CliError::CryptoError(format!("Failed to get current key space: {}", e)));
}
};
// List keypairs directly from the space
let keypairs = space.list_keypairs();
if keypairs.is_empty() {
println!("No keypairs found");
} else {
for (i, name) in keypairs.iter().enumerate() {
println!("{}. {}", i + 1, name);
}
}
Ok(())
},
KeyCommands::Export { name, output, space, password } => {
println!("Exporting keypair: {}", name);
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
// Select the keypair
keypair::select_keypair(name)?;
// Get the keypair
let kp = keypair::get_selected_keypair()?;
// Serialize the keypair
let serialized = serde_json::to_string_pretty(&kp)
.map_err(|e| CliError::CryptoError(format!("Failed to serialize keypair: {}", e)))?;
// Output the serialized keypair
match output {
Some(path) => {
fs::write(path, &serialized)?;
println!("{}", format!("Keypair exported to {}", path).green());
},
None => {
println!("{}", serialized);
}
}
Ok(())
},
KeyCommands::Import { name, input, space: space_name, password } => {
println!("Importing keypair: {}", name);
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
// If space is provided, try to load it
if let Some(space_name) = space_name {
// Get password
let pwd = match password {
Some(p) => p.clone(),
None => {
println!("Enter password for key space {}:", space_name);
rpassword::read_password()?
}
};
// Load the key space
load_key_space(&space_name, &pwd)?;
println!("Loaded key space: {}", space_name);
} else {
// Try to load the default space
println!("No active key space. Enter the name of the key space to use:");
let mut space_name = String::new();
io::stdin().read_line(&mut space_name)?;
space_name = space_name.trim().to_string();
println!("Enter password for key space {}:", space_name);
let pwd = rpassword::read_password()?;
// Load the key space
load_key_space(&space_name, &pwd)?;
println!("Loaded key space: {}", space_name);
}
}
// Get input data
let import_data = match input {
Some(path) => fs::read_to_string(path)?,
None => {
println!("Enter keypair data (end with Ctrl+D on Unix or Ctrl+Z on Windows):");
let mut buffer = String::new();
io::stdin().read_to_string(&mut buffer)?;
buffer
}
};
// Deserialize the keypair
let kp: keypair::KeyPair = serde_json::from_str(&import_data)
.map_err(|e| CliError::CryptoError(format!("Failed to deserialize keypair: {}", e)))?;
// Get the current space
let mut space = keypair::get_current_space()?;
// Add the keypair to the space
space.keypairs.insert(name.to_string(), kp);
// Update the space
keypair::set_current_space(space)?;
// Auto-save the key space
let space = keypair::get_current_space()?;
let space_name = space.name.clone();
// Get password
let pwd = match password {
Some(p) => p.clone(),
None => {
println!("Enter password for key space {}:", space_name);
rpassword::read_password()?
}
};
// Encrypt the key space
let encrypted_space = symmetric::encrypt_key_space(&space, &pwd)?;
// Load config to get key spaces directory
let config = crate::cli::config::Config::default();
config.ensure_key_spaces_dir()?;
// Store the encrypted space to disk
let space_path = config.key_spaces_dir.join(format!("{}.json", space_name));
let serialized = symmetric::serialize_encrypted_space(&encrypted_space)?;
fs::write(&space_path, serialized)?;
println!("Key space saved to {}", space_path.display());
println!("{}", "Keypair imported successfully".green());
Ok(())
},
}
}
// Execute cryptographic operation commands
pub fn execute_crypto_command(command: &CryptoCommands) -> Result<()> {
match command {
CryptoCommands::Sign { message, input, keypair, output, space, password } => {
println!("Signing with keypair: {}", keypair);
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
// Select the keypair
keypair::select_keypair(keypair)?;
// Get message to sign
let msg = match (message, input) {
(Some(m), _) => m.clone(),
(_, Some(path)) => fs::read_to_string(path)?,
_ => {
println!("Enter message to sign (end with Ctrl+D on Unix or Ctrl+Z on Windows):");
let mut buffer = String::new();
io::stdin().read_to_string(&mut buffer)?;
buffer
}
};
// Sign the message
let signature_bytes = keypair::keypair_sign(msg.as_bytes())?;
// Encode the signature as base64
let signature = base64::Engine::encode(&base64::engine::general_purpose::STANDARD, &signature_bytes);
// Output signature
match output {
Some(path) => {
fs::write(path, &signature)?;
println!("{}", format!("Signature written to {}", path).green());
},
None => {
println!("Signature: {}", signature);
}
}
Ok(())
},
CryptoCommands::Verify { message, input, signature, keypair, pubkey, space, password } => {
println!("Verifying signature");
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space and a keypair is specified
if let Some(kp) = keypair {
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
}
// Get message to verify
let msg = match (message, input) {
(Some(m), _) => m.clone(),
(_, Some(path)) => fs::read_to_string(path)?,
_ => {
println!("Enter message to verify (end with Ctrl+D on Unix or Ctrl+Z on Windows):");
let mut buffer = String::new();
io::stdin().read_to_string(&mut buffer)?;
buffer
}
};
// Decode the signature from base64
let signature_bytes = match base64::Engine::decode(&base64::engine::general_purpose::STANDARD, signature) {
Ok(bytes) => bytes,
Err(e) => {
return Err(CliError::CryptoError(format!("Invalid signature format: {}", e)));
}
};
// Verify the signature
let is_valid = if let Some(kp) = keypair {
// Select the keypair and verify
keypair::select_keypair(kp)?;
keypair::keypair_verify(msg.as_bytes(), &signature_bytes)?
} else if let Some(pk) = pubkey {
// Decode the public key from base64
let pubkey_bytes = match base64::Engine::decode(&base64::engine::general_purpose::STANDARD, pk) {
Ok(bytes) => bytes,
Err(e) => {
return Err(CliError::CryptoError(format!("Invalid public key format: {}", e)));
}
};
// Verify with the public key
keypair::verify_with_public_key(&pubkey_bytes, msg.as_bytes(), &signature_bytes)?
} else {
// Use the currently selected keypair
keypair::keypair_verify(msg.as_bytes(), &signature_bytes)?
};
if is_valid {
println!("{}", "Signature is valid".green());
} else {
println!("{}", "Signature is invalid".red());
}
Ok(())
},
CryptoCommands::Encrypt { data, input, recipient, output, space, password } => {
println!("Encrypting for recipient: {}", recipient);
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
// Get data to encrypt
let plaintext = match (data, input) {
(Some(d), _) => d.clone(),
(_, Some(path)) => fs::read_to_string(path)?,
_ => {
println!("Enter data to encrypt (end with Ctrl+D on Unix or Ctrl+Z on Windows):");
let mut buffer = String::new();
io::stdin().read_to_string(&mut buffer)?;
buffer
}
};
// Get the recipient's public key
// For now, we'll assume the recipient is a keypair name
keypair::select_keypair(&recipient)?;
let recipient_pubkey = keypair::keypair_pub_key()?;
// Encrypt the data
let ciphertext_bytes = keypair::encrypt_asymmetric(&recipient_pubkey, plaintext.as_bytes())?;
// Encode the ciphertext as base64
let ciphertext = base64::Engine::encode(&base64::engine::general_purpose::STANDARD, &ciphertext_bytes);
// Output ciphertext
match output {
Some(path) => {
fs::write(path, &ciphertext)?;
println!("{}", format!("Encrypted data written to {}", path).green());
},
None => {
println!("Encrypted data: {}", ciphertext);
}
}
Ok(())
},
CryptoCommands::Decrypt { data, input, keypair, output, space, password } => {
println!("Decrypting with keypair: {}", keypair);
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
// Select the keypair
keypair::select_keypair(keypair)?;
// Get data to decrypt
let ciphertext = match (data, input) {
(Some(d), _) => d.clone(),
(_, Some(path)) => fs::read_to_string(path)?,
_ => {
println!("Enter data to decrypt (end with Ctrl+D on Unix or Ctrl+Z on Windows):");
let mut buffer = String::new();
io::stdin().read_to_string(&mut buffer)?;
buffer
}
};
// Decode the ciphertext from base64
let ciphertext_bytes = match base64::Engine::decode(&base64::engine::general_purpose::STANDARD, &ciphertext) {
Ok(bytes) => bytes,
Err(e) => {
return Err(CliError::CryptoError(format!("Invalid ciphertext format: {}", e)));
}
};
// Decrypt the data
let plaintext_bytes = keypair::decrypt_asymmetric(&ciphertext_bytes)?;
// Convert the plaintext to a string
let plaintext = match String::from_utf8(plaintext_bytes) {
Ok(text) => text,
Err(e) => {
return Err(CliError::CryptoError(format!("Invalid UTF-8 in decrypted data: {}", e)));
}
};
// Output plaintext
match output {
Some(path) => {
fs::write(path, &plaintext)?;
println!("{}", format!("Decrypted data written to {}", path).green());
},
None => {
println!("Decrypted data: {}", plaintext);
}
}
Ok(())
},
}
}
// Execute Ethereum wallet commands
pub fn execute_ethereum_command(command: &EthereumCommands) -> Result<()> {
match command {
EthereumCommands::Create { keypair, space, password } => {
println!("Creating Ethereum wallet from keypair: {}", keypair);
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
// Select the keypair
keypair::select_keypair(keypair)?;
// Create the Ethereum wallet
let wallet = ethereum::create_ethereum_wallet()?;
println!("{}", "Ethereum wallet created successfully".green());
println!("Address: {}", wallet.address_string());
Ok(())
},
EthereumCommands::Address { keypair, space, password } => {
println!("Getting Ethereum address for keypair: {}", keypair);
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
// Select the keypair
keypair::select_keypair(keypair)?;
// Get the Ethereum address
match ethereum::get_current_ethereum_wallet() {
Ok(wallet) => {
println!("Ethereum address: {}", wallet.address_string());
Ok(())
},
Err(e) => {
// If no wallet exists, create one
if let CryptoError::NoKeypairSelected = e {
println!("No Ethereum wallet found for this keypair. Creating one...");
let wallet = ethereum::create_ethereum_wallet()?;
println!("Ethereum address: {}", wallet.address_string());
Ok(())
} else {
Err(e.into())
}
}
}
},
EthereumCommands::Balance { address, network, space, password } => {
// If space and password are provided, load the key space
if let (Some(s), Some(p)) = (space, password) {
load_key_space(s, p)?;
println!("Loaded key space: {}", s);
}
// Check if we have an active space
if let Err(_) = keypair::get_current_space() {
return Err(CliError::CryptoError("No active key space. Please use 'key load' command first or provide --space and --password".to_string()));
}
let addr = match address {
Some(a) => a.clone(),
None => {
// Try to get the address from the current wallet
match ethereum::get_current_ethereum_wallet() {
Ok(wallet) => wallet.address_string(),
Err(_) => {
println!("Enter Ethereum address:");
let mut buffer = String::new();
io::stdin().read_line(&mut buffer)?;
buffer.trim().to_string()
}
}
}
};
println!("Getting balance for address {} on network {}", addr, network);
// Create provider based on network
let provider = match network.to_lowercase().as_str() {
"gnosis" => ethereum::create_gnosis_provider()?,
_ => {
return Err(CliError::CryptoError(format!("Unsupported network: {}", network)));
}
};
// Parse the address
let eth_address = addr.parse::<ethers::types::Address>()
.map_err(|_| CliError::CryptoError("Invalid Ethereum address".to_string()))?;
// Get the balance
let rt = tokio::runtime::Runtime::new()
.map_err(|e| CliError::IoError(format!("Failed to create runtime: {}", e)))?;
let balance = rt.block_on(ethereum::get_balance(&provider, eth_address))?;
// Format the balance
let formatted_balance = ethereum::format_eth_balance(balance);
println!("Balance: {}", formatted_balance);
Ok(())
},
}
}
// Helper function to read file contents
fn read_file<P: AsRef<Path>>(path: P) -> io::Result<Vec<u8>> {
let mut file = fs::File::open(path)?;
let mut buffer = Vec::new();
file.read_to_end(&mut buffer)?;
Ok(buffer)
}
// Helper function to write file contents
fn write_file<P: AsRef<Path>>(path: P, data: &[u8]) -> io::Result<()> {
let mut file = fs::File::create(path)?;
file.write_all(data)?;
Ok(())
}

81
src/cli/config.rs Normal file
View File

@ -0,0 +1,81 @@
use std::fs;
use std::path::{Path, PathBuf};
use serde::{Deserialize, Serialize};
use crate::cli::error::{CliError, Result};
#[derive(Debug, Serialize, Deserialize)]
pub struct Config {
pub default_key_space: Option<String>,
pub default_keypair: Option<String>,
pub key_spaces_dir: PathBuf,
}
impl Default for Config {
fn default() -> Self {
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
let key_spaces_dir = home_dir.join(".crypto-cli").join("key-spaces");
Config {
default_key_space: None,
default_keypair: None,
key_spaces_dir,
}
}
}
impl Config {
pub fn load<P: AsRef<Path>>(path: Option<P>) -> Result<Self> {
let config_path = match path {
Some(p) => PathBuf::from(p.as_ref()),
None => {
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
home_dir.join(".crypto-cli").join("config.json")
}
};
if !config_path.exists() {
return Ok(Config::default());
}
let config_str = fs::read_to_string(&config_path)
.map_err(|e| CliError::ConfigError(format!("Failed to read config file: {}", e)))?;
serde_json::from_str(&config_str)
.map_err(|e| CliError::ConfigError(format!("Failed to parse config file: {}", e)))
}
pub fn save<P: AsRef<Path>>(&self, path: Option<P>) -> Result<()> {
let config_path = match path {
Some(p) => PathBuf::from(p.as_ref()),
None => {
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
let config_dir = home_dir.join(".crypto-cli");
if !config_dir.exists() {
fs::create_dir_all(&config_dir)
.map_err(|e| CliError::ConfigError(format!("Failed to create config directory: {}", e)))?;
}
config_dir.join("config.json")
}
};
let config_str = serde_json::to_string_pretty(self)
.map_err(|e| CliError::ConfigError(format!("Failed to serialize config: {}", e)))?;
fs::write(&config_path, config_str)
.map_err(|e| CliError::ConfigError(format!("Failed to write config file: {}", e)))?;
Ok(())
}
pub fn ensure_key_spaces_dir(&self) -> Result<()> {
if !self.key_spaces_dir.exists() {
fs::create_dir_all(&self.key_spaces_dir)
.map_err(|e| CliError::ConfigError(format!("Failed to create key spaces directory: {}", e)))?;
}
Ok(())
}
}

47
src/cli/error.rs Normal file
View File

@ -0,0 +1,47 @@
use std::fmt;
use std::io;
use webassembly::core::error::CryptoError;
#[derive(Debug)]
pub enum CliError {
IoError(String),
CryptoError(String),
ScriptError(String),
ConfigError(String),
NotImplemented,
}
impl fmt::Display for CliError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CliError::IoError(msg) => write!(f, "I/O Error: {}", msg),
CliError::CryptoError(msg) => write!(f, "Crypto Error: {}", msg),
CliError::ScriptError(msg) => write!(f, "Script Error: {}", msg),
CliError::ConfigError(msg) => write!(f, "Configuration Error: {}", msg),
CliError::NotImplemented => write!(f, "Command not implemented yet"),
}
}
}
impl std::error::Error for CliError {}
impl From<io::Error> for CliError {
fn from(err: io::Error) -> Self {
CliError::IoError(err.to_string())
}
}
impl From<CryptoError> for CliError {
fn from(err: CryptoError) -> Self {
CliError::CryptoError(err.to_string())
}
}
impl From<rhai::EvalAltResult> for CliError {
fn from(err: rhai::EvalAltResult) -> Self {
CliError::ScriptError(err.to_string())
}
}
// Define a Result type alias for convenience
pub type Result<T> = std::result::Result<T, CliError>;

254
src/cli/mod.rs Normal file
View File

@ -0,0 +1,254 @@
pub mod commands;
pub mod config;
pub mod error;
pub mod shell;
use clap::{Parser, Subcommand};
#[derive(Parser)]
#[command(name = "crypto-cli")]
#[command(about = "Cryptographic operations CLI with Rhai scripting support", long_about = None)]
pub struct Cli {
#[command(subcommand)]
pub command: Commands,
#[arg(short, long, help = "Enable verbose output")]
pub verbose: bool,
#[arg(short, long, help = "Config file path")]
pub config: Option<String>,
}
#[derive(Subcommand)]
pub enum Commands {
/// Key management commands
Key {
#[command(subcommand)]
command: KeyCommands,
},
/// Encryption/decryption commands
Crypto {
#[command(subcommand)]
command: CryptoCommands,
},
/// Ethereum wallet commands
Ethereum {
#[command(subcommand)]
command: EthereumCommands,
},
/// Execute Rhai script
Script {
#[arg(help = "Path to Rhai script file")]
path: Option<String>,
#[arg(short, long, help = "Execute script from string")]
inline: Option<String>,
},
/// Interactive shell
Shell,
}
// Define subcommands for each category
#[derive(Subcommand)]
pub enum KeyCommands {
/// Create a new key space
CreateSpace {
/// Name of the key space
name: String,
#[arg(long)]
/// Password to encrypt the key space (required)
password: String
},
/// List available key spaces
ListSpaces,
/// Load a key space
Load {
/// Name of the key space to load
name: String,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Create a new keypair in the current key space
CreateKeypair {
/// Name of the keypair
name: String,
#[arg(long)]
space: Option<String>,
#[arg(long)]
password: Option<String>
},
/// List keypairs in the current key space
ListKeypairs {
#[arg(long)]
/// Key space to list keypairs from
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Export a keypair
Export {
/// Name of the keypair to export
name: String,
/// Output file path (prints to stdout if not specified)
output: Option<String>,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Import a keypair
Import {
/// Name to give the imported keypair
name: String,
/// Input file path (reads from stdin if not specified)
input: Option<String>,
#[arg(long)]
/// Key space to import the keypair into
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
}
#[derive(Subcommand)]
pub enum CryptoCommands {
/// Sign a message with a keypair
Sign {
#[arg(long)]
/// Message to sign (as a string)
message: Option<String>,
#[arg(long)]
/// Input file containing the message to sign
input: Option<String>,
#[arg(long)]
/// Name of the keypair to use for signing
keypair: String,
#[arg(long)]
/// Output file for the signature (prints to stdout if not specified)
output: Option<String>,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Verify a signature
Verify {
#[arg(long)]
/// Message to verify (as a string)
message: Option<String>,
#[arg(long)]
/// Input file containing the message to verify
input: Option<String>,
#[arg(long)]
/// Signature to verify (base64 encoded)
signature: String,
#[arg(long)]
/// Name of the keypair to use for verification
keypair: Option<String>,
#[arg(long)]
/// Public key to use for verification (base64 encoded)
pubkey: Option<String>,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Encrypt data for a recipient
Encrypt {
#[arg(long)]
/// Data to encrypt (as a string)
data: Option<String>,
#[arg(long)]
/// Input file containing the data to encrypt
input: Option<String>,
#[arg(long)]
/// Name of the recipient keypair
recipient: String,
#[arg(long)]
/// Output file for the encrypted data (prints to stdout if not specified)
output: Option<String>,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Decrypt data with a keypair
Decrypt {
#[arg(long)]
/// Data to decrypt (as a string, base64 encoded)
data: Option<String>,
#[arg(long)]
/// Input file containing the data to decrypt
input: Option<String>,
#[arg(long)]
/// Name of the keypair to use for decryption
keypair: String,
#[arg(long)]
/// Output file for the decrypted data (prints to stdout if not specified)
output: Option<String>,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
}
#[derive(Subcommand)]
pub enum EthereumCommands {
/// Create an Ethereum wallet from a keypair
Create {
#[arg(long)]
/// Name of the keypair to use
keypair: String,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Get the Ethereum address for a keypair
Address {
#[arg(long)]
/// Name of the keypair
keypair: String,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
/// Get the balance of an Ethereum address
Balance {
#[arg(long)]
/// Ethereum address (uses the current wallet if not specified)
address: Option<String>,
#[arg(long)]
/// Network to use (e.g., "gnosis")
network: String,
#[arg(long)]
/// Key space containing the keypair
space: Option<String>,
#[arg(long)]
/// Password to decrypt the key space
password: Option<String>
},
}

284
src/cli/shell.rs Normal file
View File

@ -0,0 +1,284 @@
use colored::Colorize;
use rustyline::error::ReadlineError;
use rustyline::DefaultEditor;
use std::process;
use crate::cli::commands::{execute_crypto_command, execute_ethereum_command, execute_key_command};
use crate::cli::error::{CliError, Result};
use crate::cli::{CryptoCommands, EthereumCommands, KeyCommands};
pub fn run_interactive_shell() -> Result<()> {
println!("{}", "Crypto CLI Interactive Shell".green().bold());
println!("Type 'help' for a list of commands, 'exit' to quit");
let mut rl = DefaultEditor::new().map_err(|e| CliError::IoError(e.to_string()))?;
if rl.load_history("history.txt").is_err() {
println!("No previous history.");
}
loop {
let readline = rl.readline("crypto> ");
match readline {
Ok(line) => {
rl.add_history_entry(line.as_str());
let line = line.trim();
if line.is_empty() {
continue;
}
match line {
"exit" | "quit" => {
println!("Goodbye!");
break;
},
"help" => {
print_help();
},
_ => {
if let Err(e) = process_command(line) {
println!("{}: {}", "Error".red().bold(), e);
}
}
}
},
Err(ReadlineError::Interrupted) => {
println!("CTRL-C");
break;
},
Err(ReadlineError::Eof) => {
println!("CTRL-D");
break;
},
Err(err) => {
println!("Error: {:?}", err);
break;
}
}
}
rl.save_history("history.txt").map_err(|e| CliError::IoError(e.to_string()))?;
Ok(())
}
fn print_help() {
println!("{}", "Available Commands:".green().bold());
println!(" {}", "Key Management:".yellow());
println!(" key create-space <name> [password]");
println!(" key list-spaces");
println!(" key load <name> [password]");
println!(" key create-keypair <name>");
println!(" key list-keypairs");
println!(" key export <name> [output-file]");
println!(" key import <name> [input-file]");
println!(" {}", "Cryptographic Operations:".yellow());
println!(" crypto sign <keypair> <message> [output-file]");
println!(" crypto verify <signature> <message> [keypair]");
println!(" crypto encrypt <recipient> <data> [output-file]");
println!(" crypto decrypt <keypair> <data> [output-file]");
println!(" {}", "Ethereum Operations:".yellow());
println!(" eth create <keypair>");
println!(" eth address <keypair>");
println!(" eth balance <address> <network>");
println!(" {}", "General:".yellow());
println!(" help - Show this help message");
println!(" exit - Exit the shell");
}
fn process_command(cmd: &str) -> Result<()> {
let parts: Vec<&str> = cmd.split_whitespace().collect();
if parts.is_empty() {
return Ok(());
}
match parts[0] {
"key" => {
if parts.len() < 2 {
println!("Missing key subcommand. Try 'help' for a list of commands.");
return Ok(());
}
match parts[1] {
"create-space" => {
if parts.len() < 3 {
println!("Missing space name. Usage: key create-space <name> [password]");
return Ok(());
}
let name = parts[2].to_string();
let password = if parts.len() > 3 { parts[3].to_string() } else { String::new() };
execute_key_command(&KeyCommands::CreateSpace { name, password })
},
"list-spaces" => {
execute_key_command(&KeyCommands::ListSpaces)
},
"load" => {
if parts.len() < 3 {
println!("Missing space name. Usage: key load <name> [password]");
return Ok(());
}
let name = parts[2].to_string();
let password = if parts.len() > 3 { Some(parts[3].to_string()) } else { None };
execute_key_command(&KeyCommands::Load { name, password })
},
"create-keypair" => {
if parts.len() < 3 {
println!("Missing keypair name. Usage: key create-keypair <name>");
return Ok(());
}
let name = parts[2].to_string();
execute_key_command(&KeyCommands::CreateKeypair { name, space: None, password: None })
},
"list-keypairs" => {
execute_key_command(&KeyCommands::ListKeypairs { space: None, password: None })
},
"export" => {
if parts.len() < 3 {
println!("Missing keypair name. Usage: key export <name> [output-file]");
return Ok(());
}
let name = parts[2].to_string();
let output = if parts.len() > 3 { Some(parts[3].to_string()) } else { None };
execute_key_command(&KeyCommands::Export { name, output, space: None, password: None })
},
"import" => {
if parts.len() < 3 {
println!("Missing keypair name. Usage: key import <name> [input-file]");
return Ok(());
}
let name = parts[2].to_string();
let input = if parts.len() > 3 { Some(parts[3].to_string()) } else { None };
execute_key_command(&KeyCommands::Import { name, input, space: None, password: None })
},
_ => {
println!("Unknown key subcommand: {}. Try 'help' for a list of commands.", parts[1]);
Ok(())
}
}
},
"crypto" => {
if parts.len() < 2 {
println!("Missing crypto subcommand. Try 'help' for a list of commands.");
return Ok(());
}
match parts[1] {
"sign" => {
if parts.len() < 4 {
println!("Missing arguments. Usage: crypto sign <keypair> <message> [output-file]");
return Ok(());
}
let keypair = parts[2].to_string();
let message = Some(parts[3].to_string());
let output = if parts.len() > 4 { Some(parts[4].to_string()) } else { None };
execute_crypto_command(&CryptoCommands::Sign { message, input: None, keypair, output, space: None, password: None })
},
"verify" => {
if parts.len() < 4 {
println!("Missing arguments. Usage: crypto verify <signature> <message> [keypair]");
return Ok(());
}
let signature = parts[2].to_string();
let message = Some(parts[3].to_string());
let keypair = if parts.len() > 4 { Some(parts[4].to_string()) } else { None };
execute_crypto_command(&CryptoCommands::Verify { message, input: None, signature, keypair, pubkey: None, space: None, password: None })
},
"encrypt" => {
if parts.len() < 4 {
println!("Missing arguments. Usage: crypto encrypt <recipient> <data> [output-file]");
return Ok(());
}
let recipient = parts[2].to_string();
let data = Some(parts[3].to_string());
let output = if parts.len() > 4 { Some(parts[4].to_string()) } else { None };
execute_crypto_command(&CryptoCommands::Encrypt { data, input: None, recipient, output, space: None, password: None })
},
"decrypt" => {
if parts.len() < 4 {
println!("Missing arguments. Usage: crypto decrypt <keypair> <data> [output-file]");
return Ok(());
}
let keypair = parts[2].to_string();
let data = Some(parts[3].to_string());
let output = if parts.len() > 4 { Some(parts[4].to_string()) } else { None };
execute_crypto_command(&CryptoCommands::Decrypt { data, input: None, keypair, output, space: None, password: None })
},
_ => {
println!("Unknown crypto subcommand: {}. Try 'help' for a list of commands.", parts[1]);
Ok(())
}
}
},
"eth" => {
if parts.len() < 2 {
println!("Missing eth subcommand. Try 'help' for a list of commands.");
return Ok(());
}
match parts[1] {
"create" => {
if parts.len() < 3 {
println!("Missing keypair name. Usage: eth create <keypair>");
return Ok(());
}
let keypair = parts[2].to_string();
execute_ethereum_command(&EthereumCommands::Create { keypair, space: None, password: None })
},
"address" => {
if parts.len() < 3 {
println!("Missing keypair name. Usage: eth address <keypair>");
return Ok(());
}
let keypair = parts[2].to_string();
execute_ethereum_command(&EthereumCommands::Address { keypair, space: None, password: None })
},
"balance" => {
if parts.len() < 4 {
println!("Missing arguments. Usage: eth balance <address> <network>");
return Ok(());
}
let address = Some(parts[2].to_string());
let network = parts[3].to_string();
execute_ethereum_command(&EthereumCommands::Balance { address, network, space: None, password: None })
},
_ => {
println!("Unknown eth subcommand: {}. Try 'help' for a list of commands.", parts[1]);
Ok(())
}
}
},
_ => {
println!("Unknown command: {}. Try 'help' for a list of commands.", parts[0]);
Ok(())
}
}
}

View File

@ -32,7 +32,8 @@ mod verifying_key_serde {
S: Serializer, S: Serializer,
{ {
let bytes = key.to_sec1_bytes(); let bytes = key.to_sec1_bytes();
serializer.serialize_bytes(&bytes) // Convert bytes to a Vec<u8> and serialize that instead
serializer.collect_seq(bytes)
} }
struct VerifyingKeyVisitor; struct VerifyingKeyVisitor;
@ -48,7 +49,26 @@ mod verifying_key_serde {
where where
E: de::Error, E: de::Error,
{ {
VerifyingKey::from_sec1_bytes(v).map_err(|_| E::custom("invalid verifying key")) VerifyingKey::from_sec1_bytes(v).map_err(|e| {
eprintln!("Error deserializing verifying key: {:?}", e);
E::custom(format!("invalid verifying key: {:?}", e))
})
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: de::SeqAccess<'de>,
{
// Collect all bytes from the sequence
let mut bytes = Vec::new();
while let Some(byte) = seq.next_element()? {
bytes.push(byte);
}
VerifyingKey::from_sec1_bytes(&bytes).map_err(|e| {
eprintln!("Error deserializing verifying key from seq: {:?}", e);
de::Error::custom(format!("invalid verifying key from seq: {:?}", e))
})
} }
} }
@ -56,7 +76,8 @@ mod verifying_key_serde {
where where
D: Deserializer<'de>, D: Deserializer<'de>,
{ {
deserializer.deserialize_bytes(VerifyingKeyVisitor) // Try to deserialize as bytes first, then as a sequence
deserializer.deserialize_any(VerifyingKeyVisitor)
} }
} }
@ -72,7 +93,8 @@ mod signing_key_serde {
S: Serializer, S: Serializer,
{ {
let bytes = key.to_bytes(); let bytes = key.to_bytes();
serializer.serialize_bytes(&bytes) // Convert bytes to a Vec<u8> and serialize that instead
serializer.collect_seq(bytes)
} }
struct SigningKeyVisitor; struct SigningKeyVisitor;
@ -88,7 +110,26 @@ mod signing_key_serde {
where where
E: de::Error, E: de::Error,
{ {
SigningKey::from_bytes(v.into()).map_err(|_| E::custom("invalid signing key")) SigningKey::from_bytes(v.into()).map_err(|e| {
eprintln!("Error deserializing signing key: {:?}", e);
E::custom(format!("invalid signing key: {:?}", e))
})
}
fn visit_seq<A>(self, mut seq: A) -> Result<Self::Value, A::Error>
where
A: de::SeqAccess<'de>,
{
// Collect all bytes from the sequence
let mut bytes = Vec::new();
while let Some(byte) = seq.next_element()? {
bytes.push(byte);
}
SigningKey::from_bytes(bytes.as_slice().into()).map_err(|e| {
eprintln!("Error deserializing signing key from seq: {:?}", e);
de::Error::custom(format!("invalid signing key from seq: {:?}", e))
})
} }
} }
@ -96,7 +137,8 @@ mod signing_key_serde {
where where
D: Deserializer<'de>, D: Deserializer<'de>,
{ {
deserializer.deserialize_bytes(SigningKeyVisitor) // Try to deserialize as bytes first, then as a sequence
deserializer.deserialize_any(SigningKeyVisitor)
} }
} }
@ -422,4 +464,4 @@ pub fn encrypt_asymmetric(recipient_public_key: &[u8], message: &[u8]) -> Result
pub fn decrypt_asymmetric(ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> { pub fn decrypt_asymmetric(ciphertext: &[u8]) -> Result<Vec<u8>, CryptoError> {
let keypair = get_selected_keypair()?; let keypair = get_selected_keypair()?;
keypair.decrypt_asymmetric(ciphertext) keypair.decrypt_asymmetric(ciphertext)
} }

View File

@ -142,7 +142,7 @@ pub fn decrypt_with_key(key: &[u8], ciphertext_with_nonce: &[u8]) -> Result<Vec<
} }
/// Metadata for an encrypted key space. /// Metadata for an encrypted key space.
#[derive(Serialize, Deserialize)] #[derive(Serialize, Deserialize, Debug)]
pub struct EncryptedKeySpaceMetadata { pub struct EncryptedKeySpaceMetadata {
pub name: String, pub name: String,
pub created_at: u64, pub created_at: u64,
@ -150,7 +150,7 @@ pub struct EncryptedKeySpaceMetadata {
} }
/// An encrypted key space with metadata. /// An encrypted key space with metadata.
#[derive(Serialize, Deserialize)] #[derive(Serialize, Deserialize, Debug)]
pub struct EncryptedKeySpace { pub struct EncryptedKeySpace {
pub metadata: EncryptedKeySpaceMetadata, pub metadata: EncryptedKeySpaceMetadata,
pub encrypted_data: Vec<u8>, pub encrypted_data: Vec<u8>,
@ -169,8 +169,13 @@ pub struct EncryptedKeySpace {
/// * `Err(CryptoError)` if encryption fails. /// * `Err(CryptoError)` if encryption fails.
pub fn encrypt_key_space(space: &KeySpace, password: &str) -> Result<EncryptedKeySpace, CryptoError> { pub fn encrypt_key_space(space: &KeySpace, password: &str) -> Result<EncryptedKeySpace, CryptoError> {
// Serialize the key space // Serialize the key space
let serialized = serde_json::to_vec(space) let serialized = match serde_json::to_vec(space) {
.map_err(|_| CryptoError::SerializationError)?; Ok(data) => data,
Err(e) => {
eprintln!("Serialization error during encryption: {}", e);
return Err(CryptoError::SerializationError);
}
};
// Derive key from password // Derive key from password
let key = derive_key_from_password(password); let key = derive_key_from_password(password);
@ -179,7 +184,10 @@ pub fn encrypt_key_space(space: &KeySpace, password: &str) -> Result<EncryptedKe
let encrypted_data = encrypt_symmetric(&key, &serialized)?; let encrypted_data = encrypt_symmetric(&key, &serialized)?;
// Create metadata // Create metadata
let now = js_sys::Date::now() as u64; let now = std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_default()
.as_millis() as u64;
let metadata = EncryptedKeySpaceMetadata { let metadata = EncryptedKeySpaceMetadata {
name: space.name.clone(), name: space.name.clone(),
created_at: now, created_at: now,
@ -211,8 +219,13 @@ pub fn decrypt_key_space(encrypted_space: &EncryptedKeySpace, password: &str) ->
let decrypted_data = decrypt_symmetric(&key, &encrypted_space.encrypted_data)?; let decrypted_data = decrypt_symmetric(&key, &encrypted_space.encrypted_data)?;
// Deserialize the key space // Deserialize the key space
let space: KeySpace = serde_json::from_slice(&decrypted_data) let space: KeySpace = match serde_json::from_slice(&decrypted_data) {
.map_err(|_| CryptoError::SerializationError)?; Ok(space) => space,
Err(e) => {
eprintln!("Deserialization error: {}", e);
return Err(CryptoError::SerializationError);
}
};
Ok(space) Ok(space)
} }
@ -243,6 +256,11 @@ pub fn serialize_encrypted_space(encrypted_space: &EncryptedKeySpace) -> Result<
/// * `Ok(EncryptedKeySpace)` containing the deserialized encrypted key space. /// * `Ok(EncryptedKeySpace)` containing the deserialized encrypted key space.
/// * `Err(CryptoError)` if deserialization fails. /// * `Err(CryptoError)` if deserialization fails.
pub fn deserialize_encrypted_space(serialized: &str) -> Result<EncryptedKeySpace, CryptoError> { pub fn deserialize_encrypted_space(serialized: &str) -> Result<EncryptedKeySpace, CryptoError> {
serde_json::from_str(serialized) match serde_json::from_str(serialized) {
.map_err(|_| CryptoError::SerializationError) Ok(space) => Ok(space),
} Err(e) => {
eprintln!("Error deserializing encrypted space: {}", e);
Err(CryptoError::SerializationError)
}
}
}

View File

@ -5,7 +5,7 @@ use web_sys::console;
// Import modules // Import modules
mod api; mod api;
mod core; pub mod core;
mod tests; mod tests;
// Re-export for internal use // Re-export for internal use

58
src/main.rs Normal file
View File

@ -0,0 +1,58 @@
use clap::Parser;
use colored::Colorize;
use env_logger::Builder;
use log::{info, LevelFilter};
// Import the webassembly crate for access to core functionality
extern crate webassembly;
mod cli;
mod scripting;
use cli::{Cli, Commands};
fn main() -> Result<(), Box<dyn std::error::Error>> {
// Parse command line arguments
let cli = Cli::parse();
// Initialize logger with appropriate level
let mut builder = Builder::from_default_env();
if cli.verbose {
builder.filter_level(LevelFilter::Debug);
} else {
builder.filter_level(LevelFilter::Info);
}
builder.init();
// Execute the appropriate command
match &cli.command {
Commands::Key { command } => {
cli::commands::execute_key_command(command)?;
},
Commands::Crypto { command } => {
cli::commands::execute_crypto_command(command)?;
},
Commands::Ethereum { command } => {
cli::commands::execute_ethereum_command(command)?;
},
Commands::Script { path, inline } => {
let mut engine = scripting::ScriptEngine::new();
if let Some(script_path) = path {
info!("Executing script from file: {}", script_path);
engine.eval_file(script_path)?;
} else if let Some(script) = inline {
info!("Executing inline script");
engine.eval(script)?;
} else {
println!("Error: No script provided");
return Ok(());
}
},
Commands::Shell => {
cli::shell::run_interactive_shell()?;
},
}
Ok(())
}

416
src/scripting/api.rs Normal file
View File

@ -0,0 +1,416 @@
use rhai::{Engine, Scope, Dynamic, FnPtr};
use webassembly::core::keypair;
use webassembly::core::symmetric;
use webassembly::core::ethereum;
use webassembly::core::error::CryptoError;
use std::str::FromStr;
use base64::{Engine as _, engine::general_purpose::STANDARD as BASE64};
use std::fs;
use std::path::PathBuf;
// Key space management functions
fn load_key_space(name: &str, password: &str) -> bool {
// Get the key spaces directory from config
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
let key_spaces_dir = home_dir.join(".crypto-cli").join("key-spaces");
// Check if directory exists
if !key_spaces_dir.exists() {
println!("Key spaces directory does not exist");
return false;
}
// Get the key space file path
let space_path = key_spaces_dir.join(format!("{}.json", name));
// Check if file exists
if !space_path.exists() {
println!("Key space file not found: {}", space_path.display());
return false;
}
// Read the file
let serialized = match fs::read_to_string(&space_path) {
Ok(data) => data,
Err(e) => {
println!("Error reading key space file: {}", e);
return false;
}
};
// Deserialize the encrypted space
let encrypted_space = match symmetric::deserialize_encrypted_space(&serialized) {
Ok(space) => space,
Err(e) => {
println!("Error deserializing key space: {}", e);
return false;
}
};
// Decrypt the space
let space = match symmetric::decrypt_key_space(&encrypted_space, password) {
Ok(space) => space,
Err(e) => {
println!("Error decrypting key space: {}", e);
return false;
}
};
// Set as current space
match keypair::set_current_space(space) {
Ok(_) => true,
Err(e) => {
println!("Error setting current space: {}", e);
false
}
}
}
fn create_key_space(name: &str, password: &str) -> bool {
match keypair::create_space(name) {
Ok(_) => {
// Get the current space
match keypair::get_current_space() {
Ok(space) => {
// Encrypt the key space
let encrypted_space = match symmetric::encrypt_key_space(&space, password) {
Ok(encrypted) => encrypted,
Err(e) => {
println!("Error encrypting key space: {}", e);
return false;
}
};
// Serialize the encrypted space
let serialized = match symmetric::serialize_encrypted_space(&encrypted_space) {
Ok(json) => json,
Err(e) => {
println!("Error serializing encrypted space: {}", e);
return false;
}
};
// Get the key spaces directory
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
let key_spaces_dir = home_dir.join(".crypto-cli").join("key-spaces");
// Create directory if it doesn't exist
if !key_spaces_dir.exists() {
match fs::create_dir_all(&key_spaces_dir) {
Ok(_) => {},
Err(e) => {
println!("Error creating key spaces directory: {}", e);
return false;
}
}
}
// Write to file
let space_path = key_spaces_dir.join(format!("{}.json", name));
match fs::write(&space_path, serialized) {
Ok(_) => {
println!("Key space created and saved to {}", space_path.display());
true
},
Err(e) => {
println!("Error writing key space file: {}", e);
false
}
}
},
Err(e) => {
println!("Error getting current space: {}", e);
false
}
}
},
Err(e) => {
println!("Error creating key space: {}", e);
false
}
}
}
// Auto-save function for internal use
fn auto_save_key_space(password: &str) -> bool {
match keypair::get_current_space() {
Ok(space) => {
// Encrypt the key space
let encrypted_space = match symmetric::encrypt_key_space(&space, password) {
Ok(encrypted) => encrypted,
Err(e) => {
println!("Error encrypting key space: {}", e);
return false;
}
};
// Serialize the encrypted space
let serialized = match symmetric::serialize_encrypted_space(&encrypted_space) {
Ok(json) => json,
Err(e) => {
println!("Error serializing encrypted space: {}", e);
return false;
}
};
// Get the key spaces directory
let home_dir = dirs::home_dir().unwrap_or_else(|| PathBuf::from("."));
let key_spaces_dir = home_dir.join(".crypto-cli").join("key-spaces");
// Create directory if it doesn't exist
if !key_spaces_dir.exists() {
match fs::create_dir_all(&key_spaces_dir) {
Ok(_) => {},
Err(e) => {
println!("Error creating key spaces directory: {}", e);
return false;
}
}
}
// Write to file
let space_path = key_spaces_dir.join(format!("{}.json", space.name));
match fs::write(&space_path, serialized) {
Ok(_) => {
println!("Key space saved to {}", space_path.display());
true
},
Err(e) => {
println!("Error writing key space file: {}", e);
false
}
}
},
Err(e) => {
println!("Error getting current space: {}", e);
false
}
}
}
fn encrypt_key_space(password: &str) -> String {
match keypair::get_current_space() {
Ok(space) => {
match symmetric::encrypt_key_space(&space, password) {
Ok(encrypted_space) => {
match serde_json::to_string(&encrypted_space) {
Ok(json) => json,
Err(e) => {
println!("Error serializing encrypted space: {}", e);
String::new()
}
}
},
Err(e) => {
println!("Error encrypting key space: {}", e);
String::new()
}
}
},
Err(e) => {
println!("Error getting current space: {}", e);
String::new()
}
}
}
fn decrypt_key_space(encrypted: &str, password: &str) -> bool {
match serde_json::from_str(encrypted) {
Ok(encrypted_space) => {
match symmetric::decrypt_key_space(&encrypted_space, password) {
Ok(space) => {
match keypair::set_current_space(space) {
Ok(_) => true,
Err(e) => {
println!("Error setting current space: {}", e);
false
}
}
},
Err(e) => {
println!("Error decrypting key space: {}", e);
false
}
}
},
Err(e) => {
println!("Error parsing encrypted space: {}", e);
false
}
}
}
// Keypair management functions
fn create_keypair(name: &str, password: &str) -> bool {
match keypair::create_keypair(name) {
Ok(_) => {
// Auto-save the key space after creating a keypair
auto_save_key_space(password)
},
Err(e) => {
println!("Error creating keypair: {}", e);
false
}
}
}
fn select_keypair(name: &str) -> bool {
match keypair::select_keypair(name) {
Ok(_) => true,
Err(e) => {
println!("Error selecting keypair: {}", e);
false
}
}
}
fn list_keypairs() -> Vec<String> {
match keypair::list_keypairs() {
Ok(keypairs) => keypairs,
Err(e) => {
println!("Error listing keypairs: {}", e);
Vec::new()
}
}
}
// Cryptographic operations
fn sign(message: &str) -> String {
let message_bytes = message.as_bytes();
match keypair::keypair_sign(message_bytes) {
Ok(signature) => BASE64.encode(signature),
Err(e) => {
println!("Error signing message: {}", e);
String::new()
}
}
}
fn verify(message: &str, signature: &str) -> bool {
let message_bytes = message.as_bytes();
match BASE64.decode(signature) {
Ok(signature_bytes) => {
match keypair::keypair_verify(message_bytes, &signature_bytes) {
Ok(is_valid) => is_valid,
Err(e) => {
println!("Error verifying signature: {}", e);
false
}
}
},
Err(e) => {
println!("Error decoding signature: {}", e);
false
}
}
}
// Symmetric encryption
fn generate_key() -> String {
let key = symmetric::generate_symmetric_key();
BASE64.encode(key)
}
fn encrypt(key: &str, message: &str) -> String {
match BASE64.decode(key) {
Ok(key_bytes) => {
let message_bytes = message.as_bytes();
match symmetric::encrypt_symmetric(&key_bytes, message_bytes) {
Ok(ciphertext) => BASE64.encode(ciphertext),
Err(e) => {
println!("Error encrypting message: {}", e);
String::new()
}
}
},
Err(e) => {
println!("Error decoding key: {}", e);
String::new()
}
}
}
fn decrypt(key: &str, ciphertext: &str) -> String {
match BASE64.decode(key) {
Ok(key_bytes) => {
match BASE64.decode(ciphertext) {
Ok(ciphertext_bytes) => {
match symmetric::decrypt_symmetric(&key_bytes, &ciphertext_bytes) {
Ok(plaintext) => {
match String::from_utf8(plaintext) {
Ok(text) => text,
Err(e) => {
println!("Error converting plaintext to string: {}", e);
String::new()
}
}
},
Err(e) => {
println!("Error decrypting ciphertext: {}", e);
String::new()
}
}
},
Err(e) => {
println!("Error decoding ciphertext: {}", e);
String::new()
}
}
},
Err(e) => {
println!("Error decoding key: {}", e);
String::new()
}
}
}
// Ethereum operations
fn create_ethereum_wallet() -> bool {
match ethereum::create_ethereum_wallet() {
Ok(_) => true,
Err(e) => {
println!("Error creating Ethereum wallet: {}", e);
false
}
}
}
fn get_ethereum_address() -> String {
match ethereum::get_current_ethereum_wallet() {
Ok(wallet) => wallet.address_string(),
Err(e) => {
println!("Error getting Ethereum address: {}", e);
String::new()
}
}
}
pub fn register_crypto_api(engine: &mut Engine, scope: &mut Scope<'_>) {
// Register key space functions
engine.register_fn("load_key_space", load_key_space);
engine.register_fn("create_key_space", create_key_space);
engine.register_fn("encrypt_key_space", encrypt_key_space);
engine.register_fn("decrypt_key_space", decrypt_key_space);
// Register keypair functions
engine.register_fn("create_keypair", create_keypair);
engine.register_fn("select_keypair", select_keypair);
engine.register_fn("list_keypairs", list_keypairs);
// Register signing/verification functions
engine.register_fn("sign", sign);
engine.register_fn("verify", verify);
// Register symmetric encryption functions
engine.register_fn("generate_key", generate_key);
engine.register_fn("encrypt", encrypt);
engine.register_fn("decrypt", decrypt);
// Register Ethereum functions
engine.register_fn("create_ethereum_wallet", create_ethereum_wallet);
engine.register_fn("get_ethereum_address", get_ethereum_address);
// Add any additional functions or variables to the scope
scope.push("VERSION", "1.0.0");
}

46
src/scripting/engine.rs Normal file
View File

@ -0,0 +1,46 @@
use rhai::{Engine, AST, Scope, EvalAltResult};
use std::path::Path;
use std::fs;
use crate::cli::error::{CliError, Result};
use crate::scripting::api::register_crypto_api;
pub struct ScriptEngine {
engine: Engine,
scope: Scope<'static>,
}
impl ScriptEngine {
pub fn new() -> Self {
let mut engine = Engine::new();
// Set up sandboxing
engine.set_max_operations(100_000);
engine.set_max_modules(10);
engine.set_max_string_size(10_000);
engine.set_max_array_size(1_000);
engine.set_max_map_size(1_000);
// Disable potentially dangerous operations
engine.disable_symbol("eval");
engine.disable_symbol("source");
// Register crypto API
let mut scope = Scope::new();
register_crypto_api(&mut engine, &mut scope);
ScriptEngine { engine, scope }
}
pub fn eval_file<P: AsRef<Path>>(&mut self, path: P) -> Result<()> {
let script = fs::read_to_string(path)
.map_err(|e| CliError::IoError(format!("Failed to read script file: {}", e)))?;
self.eval(&script)
}
pub fn eval(&mut self, script: &str) -> Result<()> {
self.engine.eval_with_scope::<()>(&mut self.scope, script)
.map_err(|e| CliError::ScriptError(e.to_string()))
}
}

4
src/scripting/mod.rs Normal file
View File

@ -0,0 +1,4 @@
pub mod engine;
pub mod api;
pub use self::engine::ScriptEngine;