# Best Practices for Wrapping Rust Functions with Rhai This document provides comprehensive guidance on how to effectively wrap Rust functions with different standard arguments, pass structs, and handle various return types including errors when using the Rhai scripting language. ## Table of Contents 1. [Introduction](#introduction) 2. [Basic Function Registration](#basic-function-registration) 3. [Working with Different Argument Types](#working-with-different-argument-types) 4. [Passing and Working with Structs](#passing-and-working-with-structs) 5. [Error Handling](#error-handling) 6. [Returning Different Types](#returning-different-types) 7. [Native Function Handling](#native-function-handling) 8. [Advanced Patterns](#advanced-patterns) 9. [Complete Examples](#complete-examples) ## Introduction Rhai is an embedded scripting language for Rust that allows you to expose Rust functions to scripts and vice versa. This document focuses on the best practices for wrapping Rust functions so they can be called from Rhai scripts, with special attention to handling different argument types, structs, and error conditions. ## Basic Function Registration ### Simple Function Registration The most basic way to register a Rust function with Rhai is using the `register_fn` method: ```rust fn add(x: i64, y: i64) -> i64 { x + y } fn main() -> Result<(), Box> { let mut engine = Engine::new(); // Register the function with Rhai engine.register_fn("add", add); // Now the function can be called from Rhai scripts let result = engine.eval::("add(40, 2)")?; println!("Result: {}", result); // prints 42 Ok(()) } ``` ### Function Naming Conventions When registering functions, follow these naming conventions: 1. Use snake_case for function names to maintain consistency with Rhai's style 2. Choose descriptive names that clearly indicate the function's purpose 3. For functions that operate on specific types, consider prefixing with the type name (e.g., `string_length`) ## Working with Different Argument Types ### Primitive Types Rhai supports the following primitive types that can be directly used as function arguments: - `i64` (integer) - `f64` (float) - `bool` (boolean) - `String` or `&str` (string) - `char` (character) - `()` (unit type) Example: ```rust fn calculate(num: i64, factor: f64, enabled: bool) -> f64 { if enabled { num as f64 * factor } else { 0.0 } } engine.register_fn("calculate", calculate); ``` ### Arrays and Collections For array arguments: ```rust fn sum_array(arr: Array) -> i64 { arr.iter() .filter_map(|v| v.as_int().ok()) .sum() } engine.register_fn("sum_array", sum_array); ``` ### Optional Arguments and Function Overloading Rhai supports function overloading, which allows you to register multiple functions with the same name but different parameter types or counts: ```rust fn greet(name: &str) -> String { format!("Hello, {}!", name) } fn greet_with_title(title: &str, name: &str) -> String { format!("Hello, {} {}!", title, name) } engine.register_fn("greet", greet); engine.register_fn("greet", greet_with_title); // In Rhai: // greet("World") -> "Hello, World!" // greet("Mr.", "Smith") -> "Hello, Mr. Smith!" ``` ## Passing and Working with Structs ### Registering Custom Types To use Rust structs in Rhai, you need to register them: #### Method 1: Using the CustomType Trait (Recommended) ```rust #[derive(Debug, Clone, CustomType)] #[rhai_type(extra = Self::build_extra)] struct TestStruct { x: i64, } impl TestStruct { pub fn new() -> Self { Self { x: 1 } } pub fn update(&mut self) { self.x += 1000; } pub fn calculate(&mut self, data: i64) -> i64 { self.x * data } fn build_extra(builder: &mut TypeBuilder) { builder .with_name("TestStruct") .with_fn("new_ts", Self::new) .with_fn("update", Self::update) .with_fn("calc", Self::calculate); } } // In your main function: let mut engine = Engine::new(); engine.build_type::(); ``` #### Method 2: Manual Registration ```rust #[derive(Debug, Clone)] struct TestStruct { x: i64, } impl TestStruct { pub fn new() -> Self { Self { x: 1 } } pub fn update(&mut self) { self.x += 1000; } } let mut engine = Engine::new(); engine .register_type_with_name::("TestStruct") .register_fn("new_ts", TestStruct::new) .register_fn("update", TestStruct::update); ``` ### Accessing Struct Fields By default, Rhai can access public fields of registered structs: ```rust // In Rhai script: let x = new_ts(); x.x = 42; // Direct field access ``` ### Passing Structs as Arguments When passing structs as arguments to functions, ensure they implement the `Clone` trait: ```rust fn process_struct(test: TestStruct) -> i64 { test.x * 2 } engine.register_fn("process_struct", process_struct); ``` ### Returning Structs from Functions You can return custom structs from functions: ```rust fn create_struct(value: i64) -> TestStruct { TestStruct { x: value } } engine.register_fn("create_struct", create_struct); ``` ## Error Handling Error handling is a critical aspect of integrating Rust functions with Rhai. Proper error handling ensures that script execution fails gracefully with meaningful error messages. ### Basic Error Handling The most basic way to handle errors is to return a `Result` type: ```rust fn divide(a: i64, b: i64) -> Result> { if b == 0 { // Return an error if division by zero Err("Division by zero".into()) } else { Ok(a / b) } } engine.register_fn("divide", divide); ``` ### EvalAltResult Types Rhai provides several error types through the `EvalAltResult` enum: ```rust use rhai::EvalAltResult; use rhai::Position; fn my_function() -> Result> { // Different error types // Runtime error - general purpose error return Err(Box::new(EvalAltResult::ErrorRuntime( "Something went wrong".into(), Position::NONE ))); // Type error - when a type mismatch occurs return Err(Box::new(EvalAltResult::ErrorMismatchOutputType( "expected i64, got string".into(), Position::NONE, "i64".into() ))); // Function not found error return Err(Box::new(EvalAltResult::ErrorFunctionNotFound( "function_name".into(), Position::NONE ))); } ``` ### Custom Error Types For more structured error handling, you can create custom error types: ```rust use thiserror::Error; use rhai::{EvalAltResult, Position}; #[derive(Error, Debug)] enum MyError { #[error("Invalid input: {0}")] InvalidInput(String), #[error("Calculation error: {0}")] CalculationError(String), #[error("Database error: {0}")] DatabaseError(String), } // Convert your custom error to EvalAltResult fn process_data(input: i64) -> Result> { // Your logic here that might return a custom error let result = validate_input(input) .map_err(|e| Box::new(EvalAltResult::ErrorRuntime( format!("Validation failed: {}", e), Position::NONE )))?; let processed = calculate(result) .map_err(|e| Box::new(EvalAltResult::ErrorRuntime( format!("Calculation failed: {}", e), Position::NONE )))?; if processed < 0 { return Err(Box::new(EvalAltResult::ErrorRuntime( "Negative result not allowed".into(), Position::NONE ))); } Ok(processed) } // Helper functions that return our custom error type fn validate_input(input: i64) -> Result { if input <= 0 { return Err(MyError::InvalidInput("Input must be positive".into())); } Ok(input) } fn calculate(value: i64) -> Result { if value > 1000 { return Err(MyError::CalculationError("Value too large".into())); } Ok(value * 2) } ``` ### Error Propagation When calling Rhai functions from Rust, errors are propagated through the `?` operator: ```rust let result = engine.eval::("divide(10, 0)")?; // This will propagate the error ``` ### Error Context and Position Information For better debugging, include position information in your errors: ```rust fn parse_config(config: &str) -> Result> { // Get the call position from the context let pos = Position::NONE; // In a real function, you'd get this from NativeCallContext match serde_json::from_str::(config) { Ok(json) => { // Convert JSON to Rhai Map let mut map = Map::new(); // ... conversion logic ... Ok(map) }, Err(e) => { Err(Box::new(EvalAltResult::ErrorRuntime( format!("Failed to parse config: {}", e), pos ))) } } } ``` ### Best Practices for Error Handling 1. **Be Specific**: Provide clear, specific error messages that help script writers understand what went wrong 2. **Include Context**: When possible, include relevant context in error messages (e.g., variable values, expected types) 3. **Consistent Error Types**: Use consistent error types for similar issues 4. **Validate Early**: Validate inputs at the beginning of functions to fail fast 5. **Document Error Conditions**: Document possible error conditions for functions exposed to Rhai ## Returning Different Types Properly handling return types is crucial for creating a seamless integration between Rust and Rhai. This section covers various approaches to returning different types of data from Rust functions to Rhai scripts. ### Simple Return Types For simple return types, specify the type when registering the function: ```rust fn get_number() -> i64 { 42 } fn get_string() -> String { "hello".to_string() } fn get_boolean() -> bool { true } fn get_float() -> f64 { 3.14159 } fn get_char() -> char { 'A' } fn get_unit() -> () { () } engine.register_fn("get_number", get_number); engine.register_fn("get_string", get_string); engine.register_fn("get_boolean", get_boolean); engine.register_fn("get_float", get_float); engine.register_fn("get_char", get_char); engine.register_fn("get_unit", get_unit); ``` ### Dynamic Return Types WE SHOULD TRY NOT TO DO THIS For functions that may return different types based on conditions, use the `Dynamic` type: ```rust fn get_value(which: i64) -> Dynamic { match which { 0 => Dynamic::from(42), 1 => Dynamic::from("hello"), 2 => Dynamic::from(true), 3 => Dynamic::from(3.14159), 4 => { let mut array = Array::new(); array.push(Dynamic::from(1)); array.push(Dynamic::from(2)); Dynamic::from_array(array) }, 5 => { let mut map = Map::new(); map.insert("key".into(), "value".into()); Dynamic::from_map(map) }, _ => Dynamic::UNIT, } } engine.register_fn("get_value", get_value); ``` ### Returning Collections Rhai supports various collection types: ```rust // Returning an array fn get_array() -> Array { let mut array = Array::new(); array.push(Dynamic::from(1)); array.push(Dynamic::from("hello")); array.push(Dynamic::from(true)); array } // Returning a map fn get_map() -> Map { let mut map = Map::new(); map.insert("number".into(), 42.into()); map.insert("string".into(), "hello".into()); map.insert("boolean".into(), true.into()); map } // Returning a typed Vec (will be converted to Rhai Array) fn get_numbers() -> Vec { vec![1, 2, 3, 4, 5] } // Returning a HashMap (will be converted to Rhai Map) fn get_config() -> HashMap { let mut map = HashMap::new(); map.insert("host".to_string(), "localhost".to_string()); map.insert("port".to_string(), "8080".to_string()); map } engine.register_fn("get_array", get_array); engine.register_fn("get_map", get_map); engine.register_fn("get_numbers", get_numbers); engine.register_fn("get_config", get_config); ``` ### Returning Custom Structs For returning custom structs, ensure they implement the `Clone` trait: ```rust #[derive(Debug, Clone)] struct TestStruct { x: i64, name: String, active: bool, } fn create_struct(value: i64, name: &str, active: bool) -> TestStruct { TestStruct { x: value, name: name.to_string(), active } } fn get_struct_array() -> Vec { vec![ TestStruct { x: 1, name: "one".to_string(), active: true }, TestStruct { x: 2, name: "two".to_string(), active: false }, ] } engine.register_type_with_name::("TestStruct") .register_fn("create_struct", create_struct) .register_fn("get_struct_array", get_struct_array); ``` ### Returning Results and Options For functions that might fail or return optional values: ```rust // Returning a Result fn divide(a: i64, b: i64) -> Result> { if b == 0 { Err("Division by zero".into()) } else { Ok(a / b) } } // Returning an Option (converted to Dynamic) fn find_item(id: i64) -> Dynamic { let item = lookup_item(id); match item { Some(value) => value.into(), None => Dynamic::UNIT, // Rhai has no null, so use () for None } } // Helper function returning Option fn lookup_item(id: i64) -> Option { match id { 1 => Some(TestStruct { x: 1, name: "one".to_string(), active: true }), 2 => Some(TestStruct { x: 2, name: "two".to_string(), active: false }), _ => None, } } engine.register_fn("divide", divide); engine.register_fn("find_item", find_item); ``` ### Serialization and Deserialization When working with JSON or other serialized formats: ```rust use serde_json::{Value as JsonValue, json}; // Return JSON data as a Rhai Map fn get_json_data() -> Result> { // Simulate fetching JSON data let json_data = json!({ "name": "John Doe", "age": 30, "address": { "street": "123 Main St", "city": "Anytown" }, "phones": ["+1-555-1234", "+1-555-5678"] }); // Convert JSON to Rhai Map json_to_rhai_value(json_data) .and_then(|v| v.try_cast::().map_err(|_| "Expected a map".into())) } // Helper function to convert JSON Value to Rhai Dynamic fn json_to_rhai_value(json: JsonValue) -> Result> { match json { JsonValue::Null => Ok(Dynamic::UNIT), JsonValue::Bool(b) => Ok(b.into()), JsonValue::Number(n) => { if n.is_i64() { Ok(n.as_i64().unwrap().into()) } else { Ok(n.as_f64().unwrap().into()) } }, JsonValue::String(s) => Ok(s.into()), JsonValue::Array(arr) => { let mut rhai_array = Array::new(); for item in arr { rhai_array.push(json_to_rhai_value(item)?); } Ok(Dynamic::from_array(rhai_array)) }, JsonValue::Object(obj) => { let mut rhai_map = Map::new(); for (k, v) in obj { rhai_map.insert(k.into(), json_to_rhai_value(v)?); } Ok(Dynamic::from_map(rhai_map)) } } } engine.register_fn("get_json_data", get_json_data); ``` ### Working with Dynamic Type System Understanding how to work with Rhai's Dynamic type system is essential: ```rust // Function that examines a Dynamic value and returns information about it fn inspect_value(value: Dynamic) -> Map { let mut info = Map::new(); // Store the type name info.insert("type".into(), value.type_name().into()); // Store specific type information if value.is_int() { info.insert("category".into(), "number".into()); info.insert("value".into(), value.clone()); } else if value.is_float() { info.insert("category".into(), "number".into()); info.insert("value".into(), value.clone()); } else if value.is_string() { info.insert("category".into(), "string".into()); info.insert("length".into(), value.clone_cast::().len().into()); info.insert("value".into(), value.clone()); } else if value.is_array() { info.insert("category".into(), "array".into()); info.insert("length".into(), value.clone_cast::().len().into()); } else if value.is_map() { info.insert("category".into(), "map".into()); info.insert("keys".into(), value.clone_cast::().keys().len().into()); } else if value.is_bool() { info.insert("category".into(), "boolean".into()); info.insert("value".into(), value.clone()); } else { info.insert("category".into(), "other".into()); } info } engine.register_fn("inspect", inspect_value); ``` ## Native Function Handling When working with native Rust functions in Rhai, there are several important considerations for handling different argument types, especially when dealing with complex data structures and error cases. ### Native Function Signature Native Rust functions registered with Rhai can have one of two signatures: 1. **Standard Function Signature**: Functions with typed parameters ```rust fn my_function(param1: Type1, param2: Type2, ...) -> ReturnType { ... } ``` 2. **Dynamic Function Signature**: Functions that handle raw Dynamic values ```rust fn my_dynamic_function(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result> { ... } ``` ### Working with Raw Dynamic Arguments The dynamic function signature gives you more control but requires manual type checking and conversion: ```rust fn process_dynamic_args(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result> { // Check number of arguments if args.len() != 2 { return Err("Expected exactly 2 arguments".into()); } // Extract and convert the first argument to an integer let arg1 = args[0].as_int().map_err(|_| "First argument must be an integer".into())?; // Extract and convert the second argument to a string let arg2 = args[1].as_str().map_err(|_| "Second argument must be a string".into())?; // Process the arguments let result = format!("{}: {}", arg2, arg1); // Return the result as a Dynamic value Ok(result.into()) } // Register the function engine.register_fn("process", process_dynamic_args); ``` ### Handling Complex Struct Arguments When working with complex struct arguments, you have several options: #### Option 1: Use typed parameters (recommended for simple cases) ```rust #[derive(Clone)] struct ComplexData { id: i64, values: Vec, } fn process_complex(data: &mut ComplexData, factor: f64) -> f64 { let sum: f64 = data.values.iter().sum(); data.values.push(sum * factor); sum * factor } engine.register_fn("process_complex", process_complex); ``` #### Option 2: Use Dynamic parameters for more flexibility ```rust fn process_complex_dynamic(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result> { // Check arguments if args.len() != 2 { return Err("Expected exactly 2 arguments".into()); } // Get mutable reference to the complex data let data = args[0].write_lock::() .ok_or_else(|| "First argument must be ComplexData".into())?; // Get the factor let factor = args[1].as_float().map_err(|_| "Second argument must be a number".into())?; // Process the data let sum: f64 = data.values.iter().sum(); data.values.push(sum * factor); Ok((sum * factor).into()) } ``` ### Handling Variable Arguments For functions that accept a variable number of arguments: ```rust fn sum_all(context: NativeCallContext, args: &mut [&mut Dynamic]) -> Result> { let mut total: i64 = 0; for arg in args.iter() { total += arg.as_int().map_err(|_| "All arguments must be integers".into())?; } Ok(total.into()) } engine.register_fn("sum_all", sum_all); // In Rhai: // sum_all(1, 2, 3, 4, 5) -> 15 // sum_all(10, 20) -> 30 ``` ### Handling Optional Arguments For functions with optional arguments, use function overloading: ```rust fn create_person(name: &str) -> Person { Person { name: name.to_string(), age: 30 } // Default age } fn create_person_with_age(name: &str, age: i64) -> Person { Person { name: name.to_string(), age } } engine.register_fn("create_person", create_person); engine.register_fn("create_person", create_person_with_age); // In Rhai: // create_person("John") -> Person with name "John" and age 30 // create_person("John", 25) -> Person with name "John" and age 25 ``` ### Handling Default Arguments Rhai doesn't directly support default arguments, but you can simulate them: ```rust fn configure(options: &mut Map) -> Result<(), Box> { // Check if certain options exist, if not, set defaults if !options.contains_key("timeout") { options.insert("timeout".into(), 30_i64.into()); } if !options.contains_key("retry") { options.insert("retry".into(), true.into()); } Ok(()) } engine.register_fn("configure", configure); // In Rhai: // let options = #{}; // configure(options); // print(options.timeout); // Prints 30 ``` ### Handling Mutable and Immutable References Rhai supports both mutable and immutable references: ```rust // Function taking an immutable reference fn get_name(person: &Person) -> String { person.name.clone() } // Function taking a mutable reference fn increment_age(person: &mut Person) { person.age += 1; } engine.register_fn("get_name", get_name); engine.register_fn("increment_age", increment_age); ``` ### Converting Between Rust and Rhai Types When you need to convert between Rust and Rhai types: ```rust // Convert a Rust HashMap to a Rhai Map fn create_config() -> Map { let mut rust_map = HashMap::new(); rust_map.insert("server".to_string(), "localhost".to_string()); rust_map.insert("port".to_string(), "8080".to_string()); // Convert to Rhai Map let mut rhai_map = Map::new(); for (k, v) in rust_map { rhai_map.insert(k.into(), v.into()); } rhai_map } // Convert a Rhai Array to a Rust Vec fn process_array(arr: Array) -> Result> { // Convert to Rust Vec let rust_vec: Result, _> = arr.iter() .map(|v| v.as_int().map_err(|_| "Array must contain only integers".into())) .collect(); let numbers = rust_vec?; Ok(numbers.iter().sum()) } ``` ## Complete Examples ### Example 1: Basic Function Registration and Struct Handling ```rust use rhai::{Engine, EvalAltResult, RegisterFn}; #[derive(Debug, Clone)] struct Person { name: String, age: i64, } impl Person { fn new(name: &str, age: i64) -> Self { Self { name: name.to_string(), age, } } fn greet(&self) -> String { format!("Hello, my name is {} and I am {} years old.", self.name, self.age) } fn have_birthday(&mut self) { self.age += 1; } } fn is_adult(person: &Person) -> bool { person.age >= 18 } fn main() -> Result<(), Box> { let mut engine = Engine::new(); // Register the Person type engine .register_type_with_name::("Person") .register_fn("new_person", Person::new) .register_fn("greet", Person::greet) .register_fn("have_birthday", Person::have_birthday) .register_fn("is_adult", is_adult); // Run a script that uses the Person type let result = engine.eval::(r#" let p = new_person("John", 17); let greeting = p.greet(); if !is_adult(p) { p.have_birthday(); } greeting + " Now I am " + p.age.to_string() + " years old." "#)?; println!("{}", result); Ok(()) } ``` ### Example 2: Error Handling and Complex Return Types ```rust use rhai::{Engine, EvalAltResult, Map, Dynamic}; use std::collections::HashMap; #[derive(Debug, Clone)] struct Product { id: i64, name: String, price: f64, } fn get_product(id: i64) -> Result> { match id { 1 => Ok(Product { id: 1, name: "Laptop".to_string(), price: 999.99 }), 2 => Ok(Product { id: 2, name: "Phone".to_string(), price: 499.99 }), _ => Err("Product not found".into()) } } fn calculate_total(products: Array) -> Result> { let mut total = 0.0; for product_dynamic in products.iter() { let product = product_dynamic.clone().try_cast::() .map_err(|_| "Invalid product in array".into())?; total += product.price; } Ok(total) } fn get_product_map() -> Map { let mut map = Map::new(); map.insert("laptop".into(), Dynamic::from(Product { id: 1, name: "Laptop".to_string(), price: 999.99 })); map.insert("phone".into(), Dynamic::from(Product { id: 2, name: "Phone".to_string(), price: 499.99 })); map } fn main() -> Result<(), Box> { let mut engine = Engine::new(); engine .register_type_with_name::("Product") .register_fn("get_product", get_product) .register_fn("calculate_total", calculate_total) .register_fn("get_product_map", get_product_map); let result = engine.eval::(r#" let products = []; // Try to get products try { products.push(get_product(1)); products.push(get_product(2)); products.push(get_product(3)); // This will throw an error } catch(err) { print(`Error: ${err}`); } // Get products from map let product_map = get_product_map(); products.push(product_map.laptop); calculate_total(products) "#)?; println!("Total: ${:.2}", result); Ok(()) } ```