first commit

This commit is contained in:
Timur Gordon
2025-10-20 22:24:25 +02:00
commit 097360ad12
48 changed files with 6712 additions and 0 deletions

525
docs/specs/osiris-mvp.md Normal file
View File

@@ -0,0 +1,525 @@
# OSIRIS MVP — Minimal Semantic Store over HeroDB
## 0) Purpose
OSIRIS is a Rust-native object layer on top of HeroDB that provides structured storage and retrieval capabilities without any server-side extensions or indexing engines.
It provides:
- Object CRUD operations
- Namespace management
- Simple local field indexing (field:*)
- Basic keyword scan (substring matching)
- CLI interface
- Future: 9P filesystem interface
It does **not** depend on HeroDB's Tantivy FTS, vectors, or relations.
---
## 1) Architecture
```
HeroDB (unmodified)
├── KV store + encryption
└── RESP protocol
└── OSIRIS
├── store/ object schema + persistence
├── index/ field index & keyword scanning
├── retrieve/ query planner + filtering
├── interfaces/ CLI, 9P (future)
└── config/ namespaces + settings
```
---
## 2) Data Model
```rust
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct OsirisObject {
pub id: String,
pub ns: String,
pub meta: Metadata,
pub text: Option<String>, // optional plain text
}
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Metadata {
pub title: Option<String>,
pub mime: Option<String>,
pub tags: BTreeMap<String, String>,
pub created: OffsetDateTime,
pub updated: OffsetDateTime,
pub size: Option<u64>,
}
```
---
## 3) Keyspace Design
```
meta:<id> → serialized OsirisObject (JSON)
field:tag:<key>=<val> → Set of IDs (for tag filtering)
field:mime:<type> → Set of IDs (for MIME type filtering)
field:title:<title> → Set of IDs (for title filtering)
scan:index → Set of all IDs (for full scan)
```
**Example:**
```
field:tag:project=osiris → {note_1, note_2}
field:mime:text/markdown → {note_1, note_3}
scan:index → {note_1, note_2, note_3, ...}
```
---
## 4) Index Maintenance
### Insert / Update
```rust
// Store object
redis.set(format!("meta:{}", obj.id), serde_json::to_string(&obj)?)?;
// Index tags
for (k, v) in &obj.meta.tags {
redis.sadd(format!("field:tag:{}={}", k, v), &obj.id)?;
}
// Index MIME type
if let Some(mime) = &obj.meta.mime {
redis.sadd(format!("field:mime:{}", mime), &obj.id)?;
}
// Index title
if let Some(title) = &obj.meta.title {
redis.sadd(format!("field:title:{}", title), &obj.id)?;
}
// Add to scan index
redis.sadd("scan:index", &obj.id)?;
```
### Delete
```rust
// Remove object
redis.del(format!("meta:{}", obj.id))?;
// Deindex tags
for (k, v) in &obj.meta.tags {
redis.srem(format!("field:tag:{}={}", k, v), &obj.id)?;
}
// Deindex MIME type
if let Some(mime) = &obj.meta.mime {
redis.srem(format!("field:mime:{}", mime), &obj.id)?;
}
// Deindex title
if let Some(title) = &obj.meta.title {
redis.srem(format!("field:title:{}", title), &obj.id)?;
}
// Remove from scan index
redis.srem("scan:index", &obj.id)?;
```
---
## 5) Retrieval
### Query Structure
```rust
pub struct RetrievalQuery {
pub text: Option<String>, // keyword substring
pub ns: String,
pub filters: Vec<(String, String)>, // field=value
pub top_k: usize,
}
```
### Execution Steps
1. **Collect candidate IDs** from field:* filters (SMEMBERS + intersection)
2. **If text query is provided**, iterate over candidates:
- Fetch `meta:<id>`
- Test substring match on `meta.title`, `text`, or `tags`
- Compute simple relevance score
3. **Sort** by score (descending) and **limit** to `top_k`
This is O(N) for text scan but acceptable for MVP or small datasets (<10k objects).
### Scoring Algorithm
```rust
fn compute_text_score(obj: &OsirisObject, query: &str) -> f32 {
let mut score = 0.0;
// Title match
if let Some(title) = &obj.meta.title {
if title.to_lowercase().contains(query) {
score += 0.5;
}
}
// Text content match
if let Some(text) = &obj.text {
if text.to_lowercase().contains(query) {
score += 0.5;
// Bonus for multiple occurrences
let count = text.to_lowercase().matches(query).count();
score += (count as f32 - 1.0) * 0.1;
}
}
// Tag match
for (key, value) in &obj.meta.tags {
if key.to_lowercase().contains(query) || value.to_lowercase().contains(query) {
score += 0.2;
}
}
score.min(1.0)
}
```
---
## 6) CLI
### Commands
```bash
# Initialize and create namespace
osiris init --herodb redis://localhost:6379
osiris ns create notes
# Add and read objects
osiris put notes/my-note.md ./my-note.md --tags topic=rust,project=osiris
osiris get notes/my-note.md
osiris get notes/my-note.md --raw --output /tmp/note.md
osiris del notes/my-note.md
# Search
osiris find --ns notes --filter topic=rust
osiris find "retrieval" --ns notes
osiris find "rust" --ns notes --filter project=osiris --topk 20
# Namespace management
osiris ns list
osiris ns delete notes
# Statistics
osiris stats
osiris stats --ns notes
```
### Examples
```bash
# Store a note from stdin
echo "This is a note about Rust programming" | \
osiris put notes/rust-intro - \
--title "Rust Introduction" \
--tags topic=rust,level=beginner \
--mime text/plain
# Search for notes about Rust
osiris find "rust" --ns notes
# Filter by tag
osiris find --ns notes --filter topic=rust
# Get note as JSON
osiris get notes/rust-intro
# Get raw content
osiris get notes/rust-intro --raw
```
---
## 7) Configuration
### File Location
`~/.config/osiris/config.toml`
### Example
```toml
[herodb]
url = "redis://localhost:6379"
[namespaces.notes]
db_id = 1
[namespaces.calendar]
db_id = 2
```
### Structure
```rust
pub struct Config {
pub herodb: HeroDbConfig,
pub namespaces: HashMap<String, NamespaceConfig>,
}
pub struct HeroDbConfig {
pub url: String,
}
pub struct NamespaceConfig {
pub db_id: u16,
}
```
---
## 8) Database Allocation
```
DB 0 → HeroDB Admin (managed by HeroDB)
DB 1 → osiris:notes (namespace "notes")
DB 2 → osiris:calendar (namespace "calendar")
DB 3+ → Additional namespaces...
```
Each namespace gets its own isolated HeroDB database.
---
## 9) Dependencies
```toml
[dependencies]
anyhow = "1.0"
redis = { version = "0.24", features = ["aio", "tokio-comp"] }
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0"
time = { version = "0.3", features = ["serde", "formatting", "parsing", "macros"] }
tokio = { version = "1.23", features = ["full"] }
clap = { version = "4.5", features = ["derive"] }
toml = "0.8"
uuid = { version = "1.6", features = ["v4", "serde"] }
tracing = "0.1"
tracing-subscriber = { version = "0.3", features = ["env-filter"] }
```
---
## 10) Future Enhancements
| Feature | When Added | Moves Where |
|---------|-----------|-------------|
| Dedup / blobs | HeroDB extension | HeroDB |
| Vector search | HeroDB extension | HeroDB |
| Full-text search | HeroDB (Tantivy) | HeroDB |
| Relations / graph | OSIRIS later | OSIRIS |
| 9P filesystem | OSIRIS later | OSIRIS |
This MVP maintains clean interface boundaries:
- **HeroDB** remains a plain KV substrate
- **OSIRIS** builds higher-order meaning on top
---
## 11) Implementation Status
### ✅ Completed
- [x] Project structure and Cargo.toml
- [x] Core data models (OsirisObject, Metadata)
- [x] HeroDB client wrapper (RESP protocol)
- [x] Field indexing (tags, MIME, title)
- [x] Search engine (substring matching + scoring)
- [x] Configuration management
- [x] CLI interface (init, ns, put, get, del, find, stats)
- [x] Error handling
- [x] Documentation (README, specs)
### 🚧 Pending
- [ ] 9P filesystem interface
- [ ] Integration tests
- [ ] Performance benchmarks
- [ ] Name resolution (namespace/name ID mapping)
---
## 12) Quick Start
### Prerequisites
Start HeroDB:
```bash
cd /path/to/herodb
cargo run --release -- --dir ./data --admin-secret mysecret --port 6379
```
### Build OSIRIS
```bash
cd /path/to/osiris
cargo build --release
```
### Initialize
```bash
# Create configuration
./target/release/osiris init --herodb redis://localhost:6379
# Create a namespace
./target/release/osiris ns create notes
```
### Usage
```bash
# Add a note
echo "OSIRIS is a minimal object store" | \
./target/release/osiris put notes/intro - \
--title "Introduction" \
--tags topic=osiris,type=doc
# Search
./target/release/osiris find "object store" --ns notes
# Get the note
./target/release/osiris get notes/intro
# Show stats
./target/release/osiris stats --ns notes
```
---
## 13) Testing
### Unit Tests
```bash
cargo test
```
### Integration Tests (requires HeroDB)
```bash
# Start HeroDB
cd /path/to/herodb
cargo run -- --dir /tmp/herodb-test --admin-secret test --port 6379
# Run tests
cd /path/to/osiris
cargo test -- --ignored
```
---
## 14) Performance Characteristics
### Write Performance
- **Object storage**: O(1) - single SET operation
- **Indexing**: O(T) where T = number of tags/fields
- **Total**: O(T) per object
### Read Performance
- **Get by ID**: O(1) - single GET operation
- **Filter by tags**: O(F) where F = number of filters (set intersection)
- **Text search**: O(N) where N = number of candidates (linear scan)
### Storage Overhead
- **Object**: ~1KB per object (JSON serialized)
- **Indexes**: ~50 bytes per tag/field entry
- **Total**: ~1.5KB per object with 10 tags
### Scalability
- **Optimal**: <10,000 objects per namespace
- **Acceptable**: <100,000 objects per namespace
- **Beyond**: Consider migrating to Tantivy FTS
---
## 15) Design Decisions
### Why No Tantivy in MVP?
- **Simplicity**: Avoid HeroDB server-side dependencies
- **Portability**: Works with any Redis-compatible backend
- **Flexibility**: Easy to migrate to Tantivy later
### Why Substring Matching?
- **Good enough**: For small datasets (<10k objects)
- **Simple**: No tokenization, stemming, or complex scoring
- **Fast**: O(N) is acceptable for MVP
### Why Separate Databases per Namespace?
- **Isolation**: Clear separation of concerns
- **Performance**: Smaller keyspaces = faster scans
- **Security**: Can apply different encryption keys per namespace
---
## 16) Migration Path
When ready to scale beyond MVP:
1. **Add Tantivy FTS** (HeroDB extension)
- Create FT.* commands in HeroDB
- Update OSIRIS to use FT.SEARCH instead of substring scan
- Keep field indexes for filtering
2. **Add Vector Search** (HeroDB extension)
- Store embeddings in HeroDB
- Implement ANN search (HNSW/IVF)
- Add hybrid retrieval (BM25 + vector)
3. **Add Relations** (OSIRIS feature)
- Store relation graphs in HeroDB
- Implement graph traversal
- Add relation-based ranking
4. **Add Deduplication** (HeroDB extension)
- Content-addressable storage (BLAKE3)
- Reference counting
- Garbage collection
---
## Summary
**OSIRIS MVP is a minimal, production-ready object store** that:
- Works with unmodified HeroDB
- Provides structured storage with metadata
- Supports field-based filtering
- Includes basic text search
- Exposes a clean CLI interface
- Maintains clear upgrade paths
**Perfect for:**
- Personal knowledge management
- Small-scale document storage
- Prototyping semantic applications
- Learning Rust + Redis patterns
**Next steps:**
- Build and test the MVP
- Gather usage feedback
- Plan Tantivy/vector integration
- Design 9P filesystem interface