move rhailib to herolib

This commit is contained in:
Timur Gordon
2025-08-21 14:32:24 +02:00
parent aab2b6f128
commit aa0248ef17
121 changed files with 16412 additions and 0 deletions

View File

@@ -0,0 +1,320 @@
# Rationale for Orchestrator
We may have scripts that run asynchrounsly, depend on human input or depend on other scripts to complete. We want to be able to implement high-level workflows of rhai scripts.
## Design
Direct Acyclic Graphs (DAGs) are a natural fit for representing workflows.
## Requirements
1. Uses Direct Acyclic Graphs (DAGs) to represent workflows.
2. Each step in the workflow defines the script to execute, the inputs to pass to it, and the outputs to expect from it.
3. Simplicity: the output cases are binary (success or failure), and params inputted / outputted are simple key-value pairs.
4. Multiple steps can depend on the same step.
5. Scripts are executed using [RhaiDispatcher](../dispatcher/README.md).
## Architecture
The Orchestrator is a simple DAG-based workflow execution system that extends the heromodels flow structures to support workflows with dependencies and distributed script execution.
### Core Component
```mermaid
graph TB
subgraph "Orchestrator"
O[Orchestrator] --> RE[RhaiExecutor Trait]
O --> DB[(Database)]
end
subgraph "Executor Implementations"
RE --> RD[RhaiDispatcher]
RE --> WS[WebSocketClient]
RE --> HTTP[HttpClient]
RE --> LOCAL[LocalExecutor]
end
subgraph "Data Models (heromodels)"
F[Flow] --> FS[FlowStep]
FS --> SR[SignatureRequirement]
end
subgraph "Infrastructure"
RD --> RQ[Redis Queues]
RD --> W[Workers]
WS --> WSS[WebSocket Server]
HTTP --> API[REST API]
end
```
### Execution Abstraction
The orchestrator uses a trait-based approach for script execution, allowing different execution backends:
#### RhaiExecutor Trait
```rust
use rhai_dispatcher::{PlayRequestBuilder, RhaiTaskDetails, RhaiDispatcherError};
#[async_trait]
pub trait RhaiExecutor {
async fn call(&self, request: PlayRequestBuilder<'_>) -> Result<RhaiTaskDetails, RhaiDispatcherError>;
}
```
#### Executor Implementations
**RhaiDispatcher Implementation:**
```rust
pub struct DispatcherExecutor {
dispatcher: RhaiDispatcher,
}
#[async_trait]
impl RhaiExecutor for DispatcherExecutor {
async fn call(&self, request: PlayRequestBuilder<'_>) -> Result<RhaiTaskDetails, RhaiDispatcherError> {
// Use RhaiDispatcher to execute script via Redis queues
request.await_response().await
}
}
```
**WebSocket Client Implementation:**
```rust
pub struct WebSocketExecutor {
ws_client: WebSocketClient,
endpoint: String,
}
#[async_trait]
impl RhaiExecutor for WebSocketExecutor {
async fn call(&self, request: PlayRequestBuilder<'_>) -> Result<RhaiTaskDetails, RhaiDispatcherError> {
// Build the PlayRequest and send via WebSocket
let play_request = request.build()?;
// Send script execution request via WebSocket
let ws_message = serde_json::to_string(&play_request)?;
self.ws_client.send(ws_message).await?;
// Wait for response and convert to RhaiTaskDetails
let response = self.ws_client.receive().await?;
serde_json::from_str(&response).map_err(RhaiDispatcherError::from)
}
}
```
**HTTP Client Implementation:**
```rust
pub struct HttpExecutor {
http_client: reqwest::Client,
base_url: String,
}
#[async_trait]
impl RhaiExecutor for HttpExecutor {
async fn call(&self, request: PlayRequestBuilder<'_>) -> Result<RhaiTaskDetails, RhaiDispatcherError> {
// Build the PlayRequest and send via HTTP
let play_request = request.build()?;
// Send script execution request via HTTP API
let response = self.http_client
.post(&format!("{}/execute", self.base_url))
.json(&play_request)
.send()
.await?;
response.json().await.map_err(RhaiDispatcherError::from)
}
}
```
**Local Executor Implementation:**
```rust
pub struct LocalExecutor {
engine: Engine,
}
#[async_trait]
impl RhaiExecutor for LocalExecutor {
async fn call(&self, request: PlayRequestBuilder<'_>) -> Result<RhaiTaskDetails, RhaiDispatcherError> {
// Build the PlayRequest and execute locally
let play_request = request.build()?;
// Execute script directly in local Rhai engine
let result = self.engine.eval::<String>(&play_request.script);
// Convert to RhaiTaskDetails format
let task_details = RhaiTaskDetails {
task_id: play_request.id,
script: play_request.script,
status: if result.is_ok() { "completed".to_string() } else { "error".to_string() },
output: result.ok(),
error: result.err().map(|e| e.to_string()),
created_at: chrono::Utc::now(),
updated_at: chrono::Utc::now(),
caller_id: "local".to_string(),
context_id: play_request.context_id,
worker_id: "local".to_string(),
};
Ok(task_details)
}
}
```
### Data Model Extensions
Simple extensions to the existing heromodels flow structures:
#### Enhanced FlowStep Model
```rust
// Extends heromodels::models::flow::FlowStep
pub struct FlowStep {
// ... existing heromodels::models::flow::FlowStep fields
pub script: String, // Rhai script to execute
pub depends_on: Vec<u32>, // IDs of steps this step depends on
pub context_id: String, // Execution context (circle)
pub inputs: HashMap<String, String>, // Input parameters
pub outputs: HashMap<String, String>, // Output results
}
```
### Execution Flow
```mermaid
sequenceDiagram
participant Client as Client
participant O as Orchestrator
participant RE as RhaiExecutor
participant DB as Database
Client->>O: Submit Flow
O->>DB: Store flow and steps
O->>O: Find steps with no dependencies
loop Until all steps complete
O->>RE: Execute ready steps
RE-->>O: Return results
O->>DB: Update step status
O->>O: Find newly ready steps
end
O->>Client: Flow completed
```
### Flexible Orchestrator Implementation
```rust
use rhai_dispatcher::{RhaiDispatcher, PlayRequestBuilder};
use std::collections::HashSet;
pub struct Orchestrator<E: RhaiExecutor> {
executor: E,
database: Arc<Database>,
}
impl<E: RhaiExecutor> Orchestrator<E> {
pub fn new(executor: E, database: Arc<Database>) -> Self {
Self { executor, database }
}
pub async fn execute_flow(&self, flow: Flow) -> Result<(), OrchestratorError> {
// 1. Store flow in database
self.database.collection::<Flow>()?.set(&flow)?;
// 2. Find steps with no dependencies (depends_on is empty)
let mut pending_steps: Vec<FlowStep> = flow.steps.clone();
let mut completed_steps: HashSet<u32> = HashSet::new();
while !pending_steps.is_empty() {
// Find ready steps (all dependencies completed)
let ready_steps: Vec<FlowStep> = pending_steps
.iter()
.filter(|step| {
step.depends_on.iter().all(|dep_id| completed_steps.contains(dep_id))
})
.cloned()
.collect();
if ready_steps.is_empty() {
return Err(OrchestratorError::NoReadySteps);
}
// Execute ready steps concurrently
let mut tasks = Vec::new();
for step in ready_steps {
let executor = &self.executor;
let task = async move {
// Create PlayRequestBuilder for this step
let request = RhaiDispatcher::new_play_request()
.script(&step.script)
.context_id(&step.context_id)
.worker_id(&step.worker_id);
// Execute via the trait
let result = executor.call(request).await?;
Ok((step.base_data.id, result))
};
tasks.push(task);
}
// Wait for all ready steps to complete
let results = futures::future::try_join_all(tasks).await?;
// Update step status and mark as completed
for (step_id, task_details) in results {
if task_details.status == "completed" {
completed_steps.insert(step_id);
// Update step status in database
// self.update_step_status(step_id, "completed", task_details.output).await?;
} else {
return Err(OrchestratorError::StepFailed(step_id, task_details.error));
}
}
// Remove completed steps from pending
pending_steps.retain(|step| !completed_steps.contains(&step.base_data.id));
}
Ok(())
}
pub async fn get_flow_status(&self, flow_id: u32) -> Result<FlowStatus, OrchestratorError> {
// Return current status of flow and all its steps
let flow = self.database.collection::<Flow>()?.get(flow_id)?;
// Implementation would check step statuses and return overall flow status
Ok(FlowStatus::Running) // Placeholder
}
}
pub enum OrchestratorError {
DatabaseError(String),
ExecutorError(RhaiDispatcherError),
NoReadySteps,
StepFailed(u32, Option<String>),
}
pub enum FlowStatus {
Pending,
Running,
Completed,
Failed,
}
// Usage examples:
// let orchestrator = Orchestrator::new(DispatcherExecutor::new(dispatcher), db);
// let orchestrator = Orchestrator::new(WebSocketExecutor::new(ws_client), db);
// let orchestrator = Orchestrator::new(HttpExecutor::new(http_client), db);
// let orchestrator = Orchestrator::new(LocalExecutor::new(engine), db);
```
### Key Features
1. **DAG Validation**: Ensures no circular dependencies exist in the `depends_on` relationships
2. **Parallel Execution**: Executes independent steps concurrently via multiple workers
3. **Simple Dependencies**: Each step lists the step IDs it depends on
4. **RhaiDispatcher Integration**: Uses existing dispatcher for script execution
5. **Binary Outcomes**: Steps either succeed or fail (keeping it simple as per requirements)
This simple architecture provides DAG-based workflow execution while leveraging the existing rhailib infrastructure and keeping complexity minimal.