Files
herodb/src/age.rs
Maxime Van Hees 151a6ffbfa fixed test
2025-09-19 10:35:08 +02:00

536 lines
22 KiB
Rust

//! age.rs — AGE (rage) helpers + persistent key management for your mini-Redis.
//
// Features:
// - X25519 encryption/decryption (age style)
// - Ed25519 detached signatures + verification
// - Persistent named keys in DB (strings):
// age:key:{name} -> X25519 recipient (public encryption key, "age1...")
// age:privkey:{name} -> X25519 identity (secret encryption key, "AGE-SECRET-KEY-1...")
// age:signpub:{name} -> Ed25519 verify pubkey (public, used to verify signatures)
// age:signpriv:{name} -> Ed25519 signing secret key (private, used to sign)
// - Base64 wrapping for ciphertext/signature binary blobs.
use std::str::FromStr;
use secrecy::ExposeSecret;
use age::{Decryptor, Encryptor};
use age::x25519;
use ed25519_dalek::{Signature, Signer, Verifier, SigningKey, VerifyingKey};
use base64::{engine::general_purpose::STANDARD as B64, Engine as _};
use std::collections::HashSet;
use std::convert::TryInto;
use crate::protocol::Protocol;
use crate::server::Server;
use crate::error::DBError;
// ---------- Internal helpers ----------
#[derive(Debug)]
pub enum AgeWireError {
ParseKey,
Crypto(String),
Utf8,
SignatureLen,
NotFound(&'static str), // which kind of key was missing
Storage(String),
}
impl AgeWireError {
fn to_protocol(self) -> Protocol {
match self {
AgeWireError::ParseKey => Protocol::err("ERR age: invalid key"),
AgeWireError::Crypto(e) => Protocol::err(&format!("ERR age: {e}")),
AgeWireError::Utf8 => Protocol::err("ERR age: invalid UTF-8 plaintext"),
AgeWireError::SignatureLen => Protocol::err("ERR age: bad signature length"),
AgeWireError::NotFound(w) => Protocol::err(&format!("ERR age: missing {w}")),
AgeWireError::Storage(e) => Protocol::err(&format!("ERR storage: {e}")),
}
}
}
fn parse_recipient(s: &str) -> Result<x25519::Recipient, AgeWireError> {
x25519::Recipient::from_str(s).map_err(|_| AgeWireError::ParseKey)
}
fn parse_identity(s: &str) -> Result<x25519::Identity, AgeWireError> {
x25519::Identity::from_str(s).map_err(|_| AgeWireError::ParseKey)
}
fn parse_ed25519_signing_key(s: &str) -> Result<SigningKey, AgeWireError> {
// Parse base64-encoded signing key
let bytes = B64.decode(s).map_err(|_| AgeWireError::ParseKey)?;
if bytes.len() != 32 {
return Err(AgeWireError::ParseKey);
}
let key_bytes: [u8; 32] = bytes.try_into().map_err(|_| AgeWireError::ParseKey)?;
Ok(SigningKey::from_bytes(&key_bytes))
}
fn parse_ed25519_verifying_key(s: &str) -> Result<VerifyingKey, AgeWireError> {
// Parse base64-encoded verifying key
let bytes = B64.decode(s).map_err(|_| AgeWireError::ParseKey)?;
if bytes.len() != 32 {
return Err(AgeWireError::ParseKey);
}
let key_bytes: [u8; 32] = bytes.try_into().map_err(|_| AgeWireError::ParseKey)?;
VerifyingKey::from_bytes(&key_bytes).map_err(|_| AgeWireError::ParseKey)
}
// ---------- Derivation + Raw X25519 (Ed25519 -> X25519) ----------
//
// We deterministically derive an X25519 keypair from an Ed25519 SigningKey.
// We persist the X25519 public/secret as base64-encoded 32-byte raw values
// (no "age1..."/"AGE-SECRET-KEY-1..." formatting). Name-based encrypt/decrypt
// uses these raw values directly via x25519-dalek + ChaCha20Poly1305.
use chacha20poly1305::{aead::{Aead, KeyInit}, ChaCha20Poly1305, Key, Nonce};
use sha2::{Digest, Sha256};
use x25519_dalek::{PublicKey as XPublicKey, StaticSecret as XStaticSecret};
fn derive_x25519_raw_from_ed25519(sk: &SigningKey) -> ([u8; 32], [u8; 32]) {
// X25519 secret scalar (clamped) from Ed25519 secret
let scalar: [u8; 32] = sk.to_scalar_bytes();
// Build X25519 secret/public using dalek
let xsec = XStaticSecret::from(scalar);
let xpub = XPublicKey::from(&xsec);
(xpub.to_bytes(), xsec.to_bytes())
}
fn derive_x25519_raw_b64_from_ed25519(sk: &SigningKey) -> (String, String) {
let (xpub, xsec) = derive_x25519_raw_from_ed25519(sk);
(B64.encode(xpub), B64.encode(xsec))
}
// Helper: detect whether a stored key looks like an age-formatted string
fn looks_like_age_format(s: &str) -> bool {
s.starts_with("age1") || s.starts_with("AGE-SECRET-KEY-1")
}
// Our container format for name-based raw X25519 encryption:
// bytes = "HDBX1" (5) || eph_pub(32) || nonce(12) || ciphertext(..)
// Entire blob is base64-encoded for transport.
const HDBX1_MAGIC: &[u8; 5] = b"HDBX1";
fn encrypt_b64_with_x25519_raw(recip_pub_b64: &str, msg: &str) -> Result<String, AgeWireError> {
use rand::RngCore;
use rand::rngs::OsRng;
// Parse recipient public key (raw 32 bytes, base64)
let recip_pub_bytes = B64.decode(recip_pub_b64).map_err(|_| AgeWireError::ParseKey)?;
if recip_pub_bytes.len() != 32 { return Err(AgeWireError::ParseKey); }
let recip_pub_arr: [u8; 32] = recip_pub_bytes.as_slice().try_into().map_err(|_| AgeWireError::ParseKey)?;
let recip_pub: XPublicKey = XPublicKey::from(recip_pub_arr);
// Generate ephemeral X25519 keypair
let mut eph_sec_bytes = [0u8; 32];
OsRng.fill_bytes(&mut eph_sec_bytes);
let eph_sec = XStaticSecret::from(eph_sec_bytes);
let eph_pub = XPublicKey::from(&eph_sec);
// ECDH
let shared = eph_sec.diffie_hellman(&recip_pub);
// Derive symmetric key via SHA-256 over context + shared + parties
let mut hasher = Sha256::default();
hasher.update(b"herodb-x25519-v1");
hasher.update(shared.as_bytes());
hasher.update(eph_pub.as_bytes());
hasher.update(recip_pub.as_bytes());
let key_bytes = hasher.finalize();
let key = Key::from_slice(&key_bytes[..32]);
// Nonce (12 bytes)
let mut nonce_bytes = [0u8; 12];
OsRng.fill_bytes(&mut nonce_bytes);
let nonce = Nonce::from_slice(&nonce_bytes);
// Encrypt
let cipher = ChaCha20Poly1305::new(key);
let ct = cipher.encrypt(nonce, msg.as_bytes())
.map_err(|e| AgeWireError::Crypto(format!("encrypt: {e}")))?;
// Assemble container
let mut out = Vec::with_capacity(5 + 32 + 12 + ct.len());
out.extend_from_slice(HDBX1_MAGIC);
out.extend_from_slice(eph_pub.as_bytes());
out.extend_from_slice(&nonce_bytes);
out.extend_from_slice(&ct);
Ok(B64.encode(out))
}
fn decrypt_b64_with_x25519_raw(identity_sec_b64: &str, ct_b64: &str) -> Result<String, AgeWireError> {
// Parse X25519 secret (raw 32 bytes, base64)
let sec_bytes = B64.decode(identity_sec_b64).map_err(|_| AgeWireError::ParseKey)?;
if sec_bytes.len() != 32 { return Err(AgeWireError::ParseKey); }
let sec_arr: [u8; 32] = sec_bytes.as_slice().try_into().map_err(|_| AgeWireError::ParseKey)?;
let xsec = XStaticSecret::from(sec_arr);
let xpub = XPublicKey::from(&xsec); // self public
// Decode container
let blob = B64.decode(ct_b64.as_bytes()).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
if blob.len() < 5 + 32 + 12 { return Err(AgeWireError::Crypto("ciphertext too short".to_string())); }
if &blob[..5] != HDBX1_MAGIC { return Err(AgeWireError::Crypto("bad header".to_string())); }
let eph_pub_arr: [u8; 32] = blob[5..5+32].try_into().map_err(|_| AgeWireError::Crypto("bad eph pub".to_string()))?;
let eph_pub = XPublicKey::from(eph_pub_arr);
let nonce_bytes: [u8; 12] = blob[5+32..5+32+12].try_into().unwrap();
let ct = &blob[5+32+12..];
// Recompute shared + key
let shared = xsec.diffie_hellman(&eph_pub);
let mut hasher = Sha256::default();
hasher.update(b"herodb-x25519-v1");
hasher.update(shared.as_bytes());
hasher.update(eph_pub.as_bytes());
hasher.update(xpub.as_bytes());
let key_bytes = hasher.finalize();
let key = Key::from_slice(&key_bytes[..32]);
// Decrypt
let cipher = ChaCha20Poly1305::new(key);
let nonce = Nonce::from_slice(&nonce_bytes);
let pt = cipher.decrypt(nonce, ct)
.map_err(|e| AgeWireError::Crypto(format!("decrypt: {e}")))?;
String::from_utf8(pt).map_err(|_| AgeWireError::Utf8)
}
// ---------- Stateless crypto helpers (string in/out) ----------
pub fn gen_enc_keypair() -> (String, String) {
let id = x25519::Identity::generate();
let pk = id.to_public();
(pk.to_string(), id.to_string().expose_secret().to_string()) // (recipient, identity)
}
pub fn gen_sign_keypair() -> (String, String) {
use rand::RngCore;
use rand::rngs::OsRng;
// Generate random 32 bytes for the signing key
let mut secret_bytes = [0u8; 32];
OsRng.fill_bytes(&mut secret_bytes);
let signing_key = SigningKey::from_bytes(&secret_bytes);
let verifying_key = signing_key.verifying_key();
// Encode as base64 for storage
let signing_key_b64 = B64.encode(signing_key.to_bytes());
let verifying_key_b64 = B64.encode(verifying_key.to_bytes());
(verifying_key_b64, signing_key_b64) // (verify_pub, signing_secret)
}
/// Encrypt `msg` for `recipient_str` (X25519). Returns base64(ciphertext).
pub fn encrypt_b64(recipient_str: &str, msg: &str) -> Result<String, AgeWireError> {
let recipient = parse_recipient(recipient_str)?;
let enc = Encryptor::with_recipients(vec![Box::new(recipient)])
.expect("failed to create encryptor"); // Handle Option<Encryptor>
let mut out = Vec::new();
{
use std::io::Write;
let mut w = enc.wrap_output(&mut out).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
w.write_all(msg.as_bytes()).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
w.finish().map_err(|e| AgeWireError::Crypto(e.to_string()))?;
}
Ok(B64.encode(out))
}
/// Decrypt base64(ciphertext) with `identity_str`. Returns plaintext String.
pub fn decrypt_b64(identity_str: &str, ct_b64: &str) -> Result<String, AgeWireError> {
let id = parse_identity(identity_str)?;
let ct = B64.decode(ct_b64.as_bytes()).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
let dec = Decryptor::new(&ct[..]).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
// The decrypt method returns a Result<StreamReader, DecryptError>
let mut r = match dec {
Decryptor::Recipients(d) => d.decrypt(std::iter::once(&id as &dyn age::Identity))
.map_err(|e| AgeWireError::Crypto(e.to_string()))?,
Decryptor::Passphrase(_) => return Err(AgeWireError::Crypto("Expected recipients, got passphrase".to_string())),
};
let mut pt = Vec::new();
use std::io::Read;
r.read_to_end(&mut pt).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
String::from_utf8(pt).map_err(|_| AgeWireError::Utf8)
}
/// Sign bytes of `msg` (detached). Returns base64(signature bytes, 64 bytes).
pub fn sign_b64(signing_secret_str: &str, msg: &str) -> Result<String, AgeWireError> {
let signing_key = parse_ed25519_signing_key(signing_secret_str)?;
let sig = signing_key.sign(msg.as_bytes());
Ok(B64.encode(sig.to_bytes()))
}
/// Verify detached signature (base64) for `msg` with pubkey.
pub fn verify_b64(verify_pub_str: &str, msg: &str, sig_b64: &str) -> Result<bool, AgeWireError> {
let verifying_key = parse_ed25519_verifying_key(verify_pub_str)?;
let sig_bytes = B64.decode(sig_b64.as_bytes()).map_err(|e| AgeWireError::Crypto(e.to_string()))?;
if sig_bytes.len() != 64 {
return Err(AgeWireError::SignatureLen);
}
let sig = Signature::from_bytes(sig_bytes[..].try_into().unwrap());
Ok(verifying_key.verify(msg.as_bytes(), &sig).is_ok())
}
// ---------- Storage helpers ----------
fn sget(server: &Server, key: &str) -> Result<Option<String>, AgeWireError> {
let st = server.current_storage().map_err(|e| AgeWireError::Storage(e.0))?;
st.get(key).map_err(|e| AgeWireError::Storage(e.0))
}
fn sset(server: &Server, key: &str, val: &str) -> Result<(), AgeWireError> {
let st = server.current_storage().map_err(|e| AgeWireError::Storage(e.0))?;
st.set(key.to_string(), val.to_string()).map_err(|e| AgeWireError::Storage(e.0))
}
fn enc_pub_key_key(name: &str) -> String { format!("age:key:{name}") }
fn enc_priv_key_key(name: &str) -> String { format!("age:privkey:{name}") }
fn sign_pub_key_key(name: &str) -> String { format!("age:signpub:{name}") }
fn sign_priv_key_key(name: &str) -> String { format!("age:signpriv:{name}") }
// ---------- Command handlers (RESP Protocol) ----------
// Basic (stateless) ones kept for completeness
pub async fn cmd_age_genenc() -> Protocol {
let (recip, ident) = gen_enc_keypair();
Protocol::Array(vec![Protocol::BulkString(recip), Protocol::BulkString(ident)])
}
pub async fn cmd_age_gensign() -> Protocol {
let (verify, secret) = gen_sign_keypair();
Protocol::Array(vec![Protocol::BulkString(verify), Protocol::BulkString(secret)])
}
pub async fn cmd_age_encrypt(recipient: &str, message: &str) -> Protocol {
match encrypt_b64(recipient, message) {
Ok(b64) => Protocol::BulkString(b64),
Err(e) => e.to_protocol(),
}
}
pub async fn cmd_age_decrypt(identity: &str, ct_b64: &str) -> Protocol {
match decrypt_b64(identity, ct_b64) {
Ok(pt) => Protocol::BulkString(pt),
Err(e) => e.to_protocol(),
}
}
pub async fn cmd_age_sign(secret: &str, message: &str) -> Protocol {
match sign_b64(secret, message) {
Ok(b64sig) => Protocol::BulkString(b64sig),
Err(e) => e.to_protocol(),
}
}
pub async fn cmd_age_verify(verify_pub: &str, message: &str, sig_b64: &str) -> Protocol {
match verify_b64(verify_pub, message, sig_b64) {
Ok(true) => Protocol::SimpleString("1".to_string()),
Ok(false) => Protocol::SimpleString("0".to_string()),
Err(e) => e.to_protocol(),
}
}
// ---------- NEW: unified stateless generator (Ed25519 + derived X25519 raw) ----------
//
// Returns 4-tuple:
// [ verify_pub_b64 (32B), signpriv_b64 (32B), x25519_pub_b64 (32B), x25519_sec_b64 (32B) ]
// No persistence (stateless).
pub async fn cmd_age_genkey() -> Protocol {
use rand::RngCore;
use rand::rngs::OsRng;
let mut secret_bytes = [0u8; 32];
OsRng.fill_bytes(&mut secret_bytes);
let signing_key = SigningKey::from_bytes(&secret_bytes);
let verifying_key = signing_key.verifying_key();
let verify_b64 = B64.encode(verifying_key.to_bytes());
let sign_b64 = B64.encode(signing_key.to_bytes());
let (xpub_b64, xsec_b64) = derive_x25519_raw_b64_from_ed25519(&signing_key);
Protocol::Array(vec![
Protocol::BulkString(verify_b64),
Protocol::BulkString(sign_b64),
Protocol::BulkString(xpub_b64),
Protocol::BulkString(xsec_b64),
])
}
// ---------- NEW: Persistent, named-key commands ----------
pub async fn cmd_age_keygen(server: &Server, name: &str) -> Protocol {
use rand::RngCore;
use rand::rngs::OsRng;
// Generate Ed25519 keypair
let mut secret_bytes = [0u8; 32];
OsRng.fill_bytes(&mut secret_bytes);
let signing_key = SigningKey::from_bytes(&secret_bytes);
let verifying_key = signing_key.verifying_key();
// Encode Ed25519 as base64 (32 bytes)
let verify_b64 = B64.encode(verifying_key.to_bytes());
let sign_b64 = B64.encode(signing_key.to_bytes());
// Derive X25519 raw (32-byte) keys and encode as base64
let (xpub_b64, xsec_b64) = derive_x25519_raw_b64_from_ed25519(&signing_key);
// Decode to create age-formatted strings
let xpub_bytes = B64.decode(&xpub_b64).unwrap();
let xsec_bytes = B64.decode(&xsec_b64).unwrap();
let xpub_arr: [u8; 32] = xpub_bytes.as_slice().try_into().unwrap();
let xsec_arr: [u8; 32] = xsec_bytes.as_slice().try_into().unwrap();
let recip_str = format!("age1{}", B64.encode(xpub_arr));
let ident_str = format!("AGE-SECRET-KEY-1{}", B64.encode(xsec_arr));
// Persist Ed25519 and derived X25519 (key-managed mode)
if let Err(e) = sset(server, &sign_pub_key_key(name), &verify_b64) { return e.to_protocol(); }
if let Err(e) = sset(server, &sign_priv_key_key(name), &sign_b64) { return e.to_protocol(); }
if let Err(e) = sset(server, &enc_pub_key_key(name), &xpub_b64) { return e.to_protocol(); }
if let Err(e) = sset(server, &enc_priv_key_key(name), &xsec_b64) { return e.to_protocol(); }
// Return [recipient, identity] in age format
Protocol::Array(vec![
Protocol::BulkString(recip_str),
Protocol::BulkString(ident_str),
])
}
pub async fn cmd_age_signkeygen(server: &Server, name: &str) -> Protocol {
let (verify, secret) = gen_sign_keypair();
if let Err(e) = sset(server, &sign_pub_key_key(name), &verify) { return e.to_protocol(); }
if let Err(e) = sset(server, &sign_priv_key_key(name), &secret) { return e.to_protocol(); }
Protocol::Array(vec![Protocol::BulkString(verify), Protocol::BulkString(secret)])
}
pub async fn cmd_age_encrypt_name(server: &Server, name: &str, message: &str) -> Protocol {
// Load stored recipient (could be raw b64 32-byte or "age1..." from legacy)
let recip_or_b64 = match sget(server, &enc_pub_key_key(name)) {
Ok(Some(v)) => v,
Ok(None) => {
// Derive from stored Ed25519 if present, then persist
match sget(server, &sign_priv_key_key(name)) {
Ok(Some(sign_b64)) => {
let sk = match parse_ed25519_signing_key(&sign_b64) {
Ok(k) => k,
Err(e) => return e.to_protocol(),
};
let (xpub_b64, xsec_b64) = derive_x25519_raw_b64_from_ed25519(&sk);
if let Err(e) = sset(server, &enc_pub_key_key(name), &xpub_b64) { return e.to_protocol(); }
if let Err(e) = sset(server, &enc_priv_key_key(name), &xsec_b64) { return e.to_protocol(); }
xpub_b64
}
Ok(None) => return AgeWireError::NotFound("recipient (age:key:{name})").to_protocol(),
Err(e) => return e.to_protocol(),
}
}
Err(e) => return e.to_protocol(),
};
if looks_like_age_format(&recip_or_b64) {
match encrypt_b64(&recip_or_b64, message) {
Ok(ct) => Protocol::BulkString(ct),
Err(e) => e.to_protocol(),
}
} else {
match encrypt_b64_with_x25519_raw(&recip_or_b64, message) {
Ok(ct) => Protocol::BulkString(ct),
Err(e) => e.to_protocol(),
}
}
}
pub async fn cmd_age_decrypt_name(server: &Server, name: &str, ct_b64: &str) -> Protocol {
// Load stored identity (could be raw b64 32-byte or "AGE-SECRET-KEY-1..." from legacy)
let ident_or_b64 = match sget(server, &enc_priv_key_key(name)) {
Ok(Some(v)) => v,
Ok(None) => {
// Derive from stored Ed25519 if present, then persist
match sget(server, &sign_priv_key_key(name)) {
Ok(Some(sign_b64)) => {
let sk = match parse_ed25519_signing_key(&sign_b64) {
Ok(k) => k,
Err(e) => return e.to_protocol(),
};
let (xpub_b64, xsec_b64) = derive_x25519_raw_b64_from_ed25519(&sk);
if let Err(e) = sset(server, &enc_pub_key_key(name), &xpub_b64) { return e.to_protocol(); }
if let Err(e) = sset(server, &enc_priv_key_key(name), &xsec_b64) { return e.to_protocol(); }
xsec_b64
}
Ok(None) => return AgeWireError::NotFound("identity (age:privkey:{name})").to_protocol(),
Err(e) => return e.to_protocol(),
}
}
Err(e) => return e.to_protocol(),
};
if looks_like_age_format(&ident_or_b64) {
match decrypt_b64(&ident_or_b64, ct_b64) {
Ok(pt) => Protocol::BulkString(pt),
Err(e) => e.to_protocol(),
}
} else {
match decrypt_b64_with_x25519_raw(&ident_or_b64, ct_b64) {
Ok(pt) => Protocol::BulkString(pt),
Err(e) => e.to_protocol(),
}
}
}
pub async fn cmd_age_sign_name(server: &Server, name: &str, message: &str) -> Protocol {
let sec = match sget(server, &sign_priv_key_key(name)) {
Ok(Some(v)) => v,
Ok(None) => return AgeWireError::NotFound("signing secret (age:signpriv:{name})").to_protocol(),
Err(e) => return e.to_protocol(),
};
match sign_b64(&sec, message) {
Ok(sig) => Protocol::BulkString(sig),
Err(e) => e.to_protocol(),
}
}
pub async fn cmd_age_verify_name(server: &Server, name: &str, message: &str, sig_b64: &str) -> Protocol {
let pubk = match sget(server, &sign_pub_key_key(name)) {
Ok(Some(v)) => v,
Ok(None) => return AgeWireError::NotFound("verify pubkey (age:signpub:{name})").to_protocol(),
Err(e) => return e.to_protocol(),
};
match verify_b64(&pubk, message, sig_b64) {
Ok(true) => Protocol::SimpleString("1".to_string()),
Ok(false) => Protocol::SimpleString("0".to_string()),
Err(e) => e.to_protocol(),
}
}
pub async fn cmd_age_list(server: &Server) -> Protocol {
// Return a flat, deduplicated, sorted list of managed key names (no labels)
let st = match server.current_storage() { Ok(s) => s, Err(e) => return Protocol::err(&e.0) };
let pull = |pat: &str, prefix: &str| -> Result<Vec<String>, DBError> {
let keys = st.keys(pat)?;
let mut names: Vec<String> = keys
.into_iter()
.filter_map(|k| k.strip_prefix(prefix).map(|x| x.to_string()))
.collect();
names.sort();
Ok(names)
};
let encpub = match pull("age:key:*", "age:key:") { Ok(v) => v, Err(e)=> return Protocol::err(&e.0) };
let encpriv = match pull("age:privkey:*", "age:privkey:") { Ok(v) => v, Err(e)=> return Protocol::err(&e.0) };
let signpub = match pull("age:signpub:*", "age:signpub:") { Ok(v) => v, Err(e)=> return Protocol::err(&e.0) };
let signpriv = match pull("age:signpriv:*", "age:signpriv:") { Ok(v) => v, Err(e)=> return Protocol::err(&e.0) };
let mut set: HashSet<String> = HashSet::new();
for n in encpub.into_iter().chain(encpriv).chain(signpub).chain(signpriv) {
set.insert(n);
}
let mut names: Vec<String> = set.into_iter().collect();
names.sort();
Protocol::Array(names.into_iter().map(Protocol::BulkString).collect())
}