...
This commit is contained in:
36
Cargo.toml
36
Cargo.toml
@@ -1,9 +1,29 @@
|
||||
[workspace]
|
||||
members = ["herodb"]
|
||||
resolver = "2"
|
||||
[package]
|
||||
name = "herodb"
|
||||
version = "0.0.1"
|
||||
authors = ["Pin Fang <fpfangpin@hotmail.com>"]
|
||||
edition = "2021"
|
||||
|
||||
# You can define shared profiles for all workspace members here
|
||||
[profile.release]
|
||||
lto = true
|
||||
codegen-units = 1
|
||||
strip = true
|
||||
[dependencies]
|
||||
anyhow = "1.0.59"
|
||||
bytes = "1.3.0"
|
||||
thiserror = "1.0.32"
|
||||
tokio = { version = "1.23.0", features = ["full"] }
|
||||
clap = { version = "4.5.20", features = ["derive"] }
|
||||
byteorder = "1.4.3"
|
||||
futures = "0.3"
|
||||
sled = "0.34"
|
||||
redb = "2.1.3"
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_json = "1.0"
|
||||
bincode = "1.3"
|
||||
chacha20poly1305 = "0.10.1"
|
||||
rand = "0.8"
|
||||
sha2 = "0.10"
|
||||
age = "0.10"
|
||||
secrecy = "0.8"
|
||||
ed25519-dalek = "2"
|
||||
base64 = "0.22"
|
||||
|
||||
[dev-dependencies]
|
||||
redis = { version = "0.24", features = ["aio", "tokio-comp"] }
|
||||
|
@@ -70,6 +70,15 @@ MULTI/EXEC/DISCARD | ✅ | ❌ | Only supported in redb |
|
||||
**Encryption** | | | |
|
||||
Data-at-rest encryption | ✅ | ✅ | Both support [age](age.tech) encryption |
|
||||
AGE commands | ✅ | ✅ | Both support AGE crypto commands |
|
||||
**Full-Text Search** | | | |
|
||||
FT.CREATE | ✅ | ✅ | Create search index with schema |
|
||||
FT.ADD | ✅ | ✅ | Add document to search index |
|
||||
FT.SEARCH | ✅ | ✅ | Search documents with query |
|
||||
FT.DEL | ✅ | ✅ | Delete document from index |
|
||||
FT.INFO | ✅ | ✅ | Get index information |
|
||||
FT.DROP | ✅ | ✅ | Drop search index |
|
||||
FT.ALTER | ✅ | ✅ | Alter index schema |
|
||||
FT.AGGREGATE | ✅ | ✅ | Aggregate search results |
|
||||
|
||||
### Performance Considerations
|
||||
|
397
docs/search.md
Normal file
397
docs/search.md
Normal file
@@ -0,0 +1,397 @@
|
||||
# Full-Text Search with Tantivy
|
||||
|
||||
HeroDB includes powerful full-text search capabilities powered by [Tantivy](https://github.com/quickwit-oss/tantivy), a fast full-text search engine library written in Rust. This provides Redis-compatible search commands similar to RediSearch.
|
||||
|
||||
## Overview
|
||||
|
||||
The search functionality allows you to:
|
||||
- Create search indexes with custom schemas
|
||||
- Index documents with multiple field types
|
||||
- Perform complex queries with filters
|
||||
- Support for text, numeric, date, and geographic data
|
||||
- Real-time search with high performance
|
||||
|
||||
## Search Commands
|
||||
|
||||
### FT.CREATE - Create Search Index
|
||||
|
||||
Create a new search index with a defined schema.
|
||||
|
||||
```bash
|
||||
FT.CREATE index_name SCHEMA field_name field_type [options] [field_name field_type [options] ...]
|
||||
```
|
||||
|
||||
**Field Types:**
|
||||
- `TEXT` - Full-text searchable text fields
|
||||
- `NUMERIC` - Numeric fields (integers, floats)
|
||||
- `TAG` - Tag fields for exact matching
|
||||
- `GEO` - Geographic coordinates (lat,lon)
|
||||
- `DATE` - Date/timestamp fields
|
||||
|
||||
**Field Options:**
|
||||
- `STORED` - Store field value for retrieval
|
||||
- `INDEXED` - Make field searchable
|
||||
- `TOKENIZED` - Enable tokenization for text fields
|
||||
- `FAST` - Enable fast access for numeric fields
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
# Create a product search index
|
||||
FT.CREATE products SCHEMA
|
||||
title TEXT STORED INDEXED TOKENIZED
|
||||
description TEXT STORED INDEXED TOKENIZED
|
||||
price NUMERIC STORED INDEXED FAST
|
||||
category TAG STORED
|
||||
location GEO STORED
|
||||
created_date DATE STORED INDEXED
|
||||
```
|
||||
|
||||
### FT.ADD - Add Document to Index
|
||||
|
||||
Add a document to a search index.
|
||||
|
||||
```bash
|
||||
FT.ADD index_name doc_id [SCORE score] FIELDS field_name field_value [field_name field_value ...]
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
# Add a product document
|
||||
FT.ADD products product:1 SCORE 1.0 FIELDS
|
||||
title "Wireless Headphones"
|
||||
description "High-quality wireless headphones with noise cancellation"
|
||||
price 199.99
|
||||
category "electronics"
|
||||
location "37.7749,-122.4194"
|
||||
created_date 1640995200000
|
||||
```
|
||||
|
||||
### FT.SEARCH - Search Documents
|
||||
|
||||
Search for documents in an index.
|
||||
|
||||
```bash
|
||||
FT.SEARCH index_name query [LIMIT offset count] [FILTER field min max] [RETURN field [field ...]]
|
||||
```
|
||||
|
||||
**Query Syntax:**
|
||||
- Simple terms: `wireless headphones`
|
||||
- Phrase queries: `"noise cancellation"`
|
||||
- Field-specific: `title:wireless`
|
||||
- Boolean operators: `wireless AND headphones`
|
||||
- Wildcards: `head*`
|
||||
|
||||
**Examples:**
|
||||
```bash
|
||||
# Simple text search
|
||||
FT.SEARCH products "wireless headphones"
|
||||
|
||||
# Search with filters
|
||||
FT.SEARCH products "headphones" FILTER price 100 300 LIMIT 0 10
|
||||
|
||||
# Field-specific search
|
||||
FT.SEARCH products "title:wireless AND category:electronics"
|
||||
|
||||
# Return specific fields only
|
||||
FT.SEARCH products "*" RETURN title price
|
||||
```
|
||||
|
||||
### FT.DEL - Delete Document
|
||||
|
||||
Remove a document from the search index.
|
||||
|
||||
```bash
|
||||
FT.DEL index_name doc_id
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.DEL products product:1
|
||||
```
|
||||
|
||||
### FT.INFO - Get Index Information
|
||||
|
||||
Get information about a search index.
|
||||
|
||||
```bash
|
||||
FT.INFO index_name
|
||||
```
|
||||
|
||||
**Returns:**
|
||||
- Index name and document count
|
||||
- Field definitions and types
|
||||
- Index configuration
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.INFO products
|
||||
```
|
||||
|
||||
### FT.DROP - Drop Index
|
||||
|
||||
Delete an entire search index.
|
||||
|
||||
```bash
|
||||
FT.DROP index_name
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.DROP products
|
||||
```
|
||||
|
||||
### FT.ALTER - Alter Index Schema
|
||||
|
||||
Add new fields to an existing index.
|
||||
|
||||
```bash
|
||||
FT.ALTER index_name SCHEMA ADD field_name field_type [options]
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
FT.ALTER products SCHEMA ADD brand TAG STORED
|
||||
```
|
||||
|
||||
### FT.AGGREGATE - Aggregate Search Results
|
||||
|
||||
Perform aggregations on search results.
|
||||
|
||||
```bash
|
||||
FT.AGGREGATE index_name query [GROUPBY field] [REDUCE function field AS alias]
|
||||
```
|
||||
|
||||
**Example:**
|
||||
```bash
|
||||
# Group products by category and count
|
||||
FT.AGGREGATE products "*" GROUPBY category REDUCE COUNT 0 AS count
|
||||
```
|
||||
|
||||
## Field Types in Detail
|
||||
|
||||
### TEXT Fields
|
||||
- **Purpose**: Full-text search on natural language content
|
||||
- **Features**: Tokenization, stemming, stop-word removal
|
||||
- **Options**: `STORED`, `INDEXED`, `TOKENIZED`
|
||||
- **Example**: Product titles, descriptions, content
|
||||
|
||||
### NUMERIC Fields
|
||||
- **Purpose**: Numeric data for range queries and sorting
|
||||
- **Types**: I64, U64, F64
|
||||
- **Options**: `STORED`, `INDEXED`, `FAST`
|
||||
- **Example**: Prices, quantities, ratings
|
||||
|
||||
### TAG Fields
|
||||
- **Purpose**: Exact-match categorical data
|
||||
- **Features**: No tokenization, exact string matching
|
||||
- **Options**: `STORED`, case sensitivity control
|
||||
- **Example**: Categories, brands, status values
|
||||
|
||||
### GEO Fields
|
||||
- **Purpose**: Geographic coordinates
|
||||
- **Format**: "latitude,longitude" (e.g., "37.7749,-122.4194")
|
||||
- **Features**: Geographic distance queries
|
||||
- **Options**: `STORED`
|
||||
|
||||
### DATE Fields
|
||||
- **Purpose**: Timestamp and date data
|
||||
- **Format**: Unix timestamp in milliseconds
|
||||
- **Features**: Range queries, temporal filtering
|
||||
- **Options**: `STORED`, `INDEXED`, `FAST`
|
||||
|
||||
## Search Query Syntax
|
||||
|
||||
### Basic Queries
|
||||
```bash
|
||||
# Single term
|
||||
FT.SEARCH products "wireless"
|
||||
|
||||
# Multiple terms (AND by default)
|
||||
FT.SEARCH products "wireless headphones"
|
||||
|
||||
# Phrase query
|
||||
FT.SEARCH products "\"noise cancellation\""
|
||||
```
|
||||
|
||||
### Field-Specific Queries
|
||||
```bash
|
||||
# Search in specific field
|
||||
FT.SEARCH products "title:wireless"
|
||||
|
||||
# Multiple field queries
|
||||
FT.SEARCH products "title:wireless AND description:bluetooth"
|
||||
```
|
||||
|
||||
### Boolean Operators
|
||||
```bash
|
||||
# AND operator
|
||||
FT.SEARCH products "wireless AND headphones"
|
||||
|
||||
# OR operator
|
||||
FT.SEARCH products "wireless OR bluetooth"
|
||||
|
||||
# NOT operator
|
||||
FT.SEARCH products "headphones NOT wired"
|
||||
```
|
||||
|
||||
### Wildcards and Fuzzy Search
|
||||
```bash
|
||||
# Wildcard search
|
||||
FT.SEARCH products "head*"
|
||||
|
||||
# Fuzzy search (approximate matching)
|
||||
FT.SEARCH products "%headphone%"
|
||||
```
|
||||
|
||||
### Range Queries
|
||||
```bash
|
||||
# Numeric range in query
|
||||
FT.SEARCH products "@price:[100 300]"
|
||||
|
||||
# Date range
|
||||
FT.SEARCH products "@created_date:[1640995200000 1672531200000]"
|
||||
```
|
||||
|
||||
## Filtering and Sorting
|
||||
|
||||
### FILTER Clause
|
||||
```bash
|
||||
# Numeric filter
|
||||
FT.SEARCH products "headphones" FILTER price 100 300
|
||||
|
||||
# Multiple filters
|
||||
FT.SEARCH products "*" FILTER price 100 500 FILTER rating 4 5
|
||||
```
|
||||
|
||||
### LIMIT Clause
|
||||
```bash
|
||||
# Pagination
|
||||
FT.SEARCH products "wireless" LIMIT 0 10 # First 10 results
|
||||
FT.SEARCH products "wireless" LIMIT 10 10 # Next 10 results
|
||||
```
|
||||
|
||||
### RETURN Clause
|
||||
```bash
|
||||
# Return specific fields
|
||||
FT.SEARCH products "*" RETURN title price
|
||||
|
||||
# Return all stored fields (default)
|
||||
FT.SEARCH products "*"
|
||||
```
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
### Indexing Strategy
|
||||
- Only index fields you need to search on
|
||||
- Use `FAST` option for frequently filtered numeric fields
|
||||
- Consider storage vs. search performance trade-offs
|
||||
|
||||
### Query Optimization
|
||||
- Use specific field queries when possible
|
||||
- Combine filters with text queries for better performance
|
||||
- Use pagination with LIMIT for large result sets
|
||||
|
||||
### Memory Usage
|
||||
- Tantivy indexes are memory-mapped for performance
|
||||
- Index size depends on document count and field configuration
|
||||
- Monitor disk space for index storage
|
||||
|
||||
## Integration with Redis Commands
|
||||
|
||||
Search indexes work alongside regular Redis data:
|
||||
|
||||
```bash
|
||||
# Store product data in Redis hash
|
||||
HSET product:1 title "Wireless Headphones" price "199.99"
|
||||
|
||||
# Index the same data for search
|
||||
FT.ADD products product:1 FIELDS title "Wireless Headphones" price 199.99
|
||||
|
||||
# Search returns document IDs that can be used with Redis commands
|
||||
FT.SEARCH products "wireless"
|
||||
# Returns: product:1
|
||||
|
||||
# Retrieve full data using Redis
|
||||
HGETALL product:1
|
||||
```
|
||||
|
||||
## Example Use Cases
|
||||
|
||||
### E-commerce Product Search
|
||||
```bash
|
||||
# Create product catalog index
|
||||
FT.CREATE catalog SCHEMA
|
||||
name TEXT STORED INDEXED TOKENIZED
|
||||
description TEXT INDEXED TOKENIZED
|
||||
price NUMERIC STORED INDEXED FAST
|
||||
category TAG STORED
|
||||
brand TAG STORED
|
||||
rating NUMERIC STORED FAST
|
||||
|
||||
# Add products
|
||||
FT.ADD catalog prod:1 FIELDS name "iPhone 14" price 999 category "phones" brand "apple" rating 4.5
|
||||
FT.ADD catalog prod:2 FIELDS name "Samsung Galaxy" price 899 category "phones" brand "samsung" rating 4.3
|
||||
|
||||
# Search queries
|
||||
FT.SEARCH catalog "iPhone"
|
||||
FT.SEARCH catalog "phones" FILTER price 800 1000
|
||||
FT.SEARCH catalog "@brand:apple"
|
||||
```
|
||||
|
||||
### Content Management
|
||||
```bash
|
||||
# Create content index
|
||||
FT.CREATE content SCHEMA
|
||||
title TEXT STORED INDEXED TOKENIZED
|
||||
body TEXT INDEXED TOKENIZED
|
||||
author TAG STORED
|
||||
published DATE STORED INDEXED
|
||||
tags TAG STORED
|
||||
|
||||
# Search content
|
||||
FT.SEARCH content "machine learning"
|
||||
FT.SEARCH content "@author:john AND @tags:ai"
|
||||
FT.SEARCH content "*" FILTER published 1640995200000 1672531200000
|
||||
```
|
||||
|
||||
### Geographic Search
|
||||
```bash
|
||||
# Create location-based index
|
||||
FT.CREATE places SCHEMA
|
||||
name TEXT STORED INDEXED TOKENIZED
|
||||
location GEO STORED
|
||||
type TAG STORED
|
||||
|
||||
# Add locations
|
||||
FT.ADD places place:1 FIELDS name "Golden Gate Bridge" location "37.8199,-122.4783" type "landmark"
|
||||
|
||||
# Geographic queries (future feature)
|
||||
FT.SEARCH places "@location:[37.7749 -122.4194 10 km]"
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
Common error responses:
|
||||
- `ERR index not found` - Index doesn't exist
|
||||
- `ERR field not found` - Field not defined in schema
|
||||
- `ERR invalid query syntax` - Malformed query
|
||||
- `ERR document not found` - Document ID doesn't exist
|
||||
|
||||
## Best Practices
|
||||
|
||||
1. **Schema Design**: Plan your schema carefully - changes require reindexing
|
||||
2. **Field Selection**: Only store and index fields you actually need
|
||||
3. **Batch Operations**: Add multiple documents efficiently
|
||||
4. **Query Testing**: Test queries for performance with realistic data
|
||||
5. **Monitoring**: Monitor index size and query performance
|
||||
6. **Backup**: Include search indexes in backup strategies
|
||||
|
||||
## Future Enhancements
|
||||
|
||||
Planned features:
|
||||
- Geographic distance queries
|
||||
- Advanced aggregations and faceting
|
||||
- Highlighting of search results
|
||||
- Synonyms and custom analyzers
|
||||
- Real-time suggestions and autocomplete
|
||||
- Index replication and sharding
|
@@ -1,29 +0,0 @@
|
||||
[package]
|
||||
name = "herodb"
|
||||
version = "0.0.1"
|
||||
authors = ["Pin Fang <fpfangpin@hotmail.com>"]
|
||||
edition = "2021"
|
||||
|
||||
[dependencies]
|
||||
anyhow = "1.0.59"
|
||||
bytes = "1.3.0"
|
||||
thiserror = "1.0.32"
|
||||
tokio = { version = "1.23.0", features = ["full"] }
|
||||
clap = { version = "4.5.20", features = ["derive"] }
|
||||
byteorder = "1.4.3"
|
||||
futures = "0.3"
|
||||
sled = "0.34"
|
||||
redb = "2.1.3"
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_json = "1.0"
|
||||
bincode = "1.3"
|
||||
chacha20poly1305 = "0.10.1"
|
||||
rand = "0.8"
|
||||
sha2 = "0.10"
|
||||
age = "0.10"
|
||||
secrecy = "0.8"
|
||||
ed25519-dalek = "2"
|
||||
base64 = "0.22"
|
||||
|
||||
[dev-dependencies]
|
||||
redis = { version = "0.24", features = ["aio", "tokio-comp"] }
|
@@ -1,71 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Start the herodb server in the background
|
||||
echo "Starting herodb server..."
|
||||
cargo run -p herodb -- --dir /tmp/herodb_age_test --port 6382 --debug --encryption-key "testkey" &
|
||||
SERVER_PID=$!
|
||||
sleep 2 # Give the server a moment to start
|
||||
|
||||
REDIS_CLI="redis-cli -p 6382"
|
||||
|
||||
echo "--- Generating and Storing Encryption Keys ---"
|
||||
# The new AGE commands are 'AGE KEYGEN <name>' etc., based on src/cmd.rs
|
||||
# This script uses older commands like 'AGE.GENERATE_KEYPAIR alice'
|
||||
# The demo script needs to be updated to match the implemented commands.
|
||||
# Let's assume the commands in the script are what's expected for now,
|
||||
# but note this discrepancy. The new commands are AGE KEYGEN etc.
|
||||
# The script here uses a different syntax not found in src/cmd.rs like 'AGE.GENERATE_KEYPAIR'.
|
||||
# For now, I will modify the script to fit the actual implementation.
|
||||
|
||||
echo "--- Generating and Storing Encryption Keys ---"
|
||||
$REDIS_CLI AGE KEYGEN alice
|
||||
$REDIS_CLI AGE KEYGEN bob
|
||||
|
||||
echo "--- Encrypting and Decrypting a Message ---"
|
||||
MESSAGE="Hello, AGE encryption!"
|
||||
# The new logic stores keys internally and does not expose a command to get the public key.
|
||||
# We will encrypt by name.
|
||||
ALICE_PUBKEY_REPLY=$($REDIS_CLI AGE KEYGEN alice | head -n 2 | tail -n 1)
|
||||
echo "Alice's Public Key: $ALICE_PUBKEY_REPLY"
|
||||
|
||||
echo "Encrypting message: '$MESSAGE' with Alice's identity..."
|
||||
# AGE.ENCRYPT recipient message. But since we use persistent keys, let's use ENCRYPTNAME
|
||||
CIPHERTEXT=$($REDIS_CLI AGE ENCRYPTNAME alice "$MESSAGE")
|
||||
echo "Ciphertext: $CIPHERTEXT"
|
||||
|
||||
echo "Decrypting ciphertext with Alice's private key..."
|
||||
DECRYPTED_MESSAGE=$($REDIS_CLI AGE DECRYPTNAME alice "$CIPHERTEXT")
|
||||
echo "Decrypted Message: $DECRYPTED_MESSAGE"
|
||||
|
||||
echo "--- Generating and Storing Signing Keys ---"
|
||||
$REDIS_CLI AGE SIGNKEYGEN signer1
|
||||
|
||||
echo "--- Signing and Verifying a Message ---"
|
||||
SIGN_MESSAGE="This is a message to be signed."
|
||||
# Similar to above, we don't have GET_SIGN_PUBKEY. We will verify by name.
|
||||
|
||||
echo "Signing message: '$SIGN_MESSAGE' with signer1's private key..."
|
||||
SIGNATURE=$($REDIS_CLI AGE SIGNNAME "$SIGN_MESSAGE" signer1)
|
||||
echo "Signature: $SIGNATURE"
|
||||
|
||||
echo "Verifying signature with signer1's public key..."
|
||||
VERIFY_RESULT=$($REDIS_CLI AGE VERIFYNAME signer1 "$SIGN_MESSAGE" "$SIGNATURE")
|
||||
echo "Verification Result: $VERIFY_RESULT"
|
||||
|
||||
|
||||
# There is no DELETE_KEYPAIR command in the implementation
|
||||
echo "--- Cleaning up keys (manual in herodb) ---"
|
||||
# We would use DEL for age:key:alice, etc.
|
||||
$REDIS_CLI DEL age:key:alice
|
||||
$REDIS_CLI DEL age:privkey:alice
|
||||
$REDIS_CLI DEL age:key:bob
|
||||
$REDIS_CLI DEL age:privkey:bob
|
||||
$REDIS_CLI DEL age:signpub:signer1
|
||||
$REDIS_CLI DEL age:signpriv:signer1
|
||||
|
||||
echo "--- Stopping herodb server ---"
|
||||
kill $SERVER_PID
|
||||
wait $SERVER_PID 2>/dev/null
|
||||
echo "Server stopped."
|
||||
|
||||
echo "Bash demo complete."
|
@@ -1,83 +0,0 @@
|
||||
use std::io::{Read, Write};
|
||||
use std::net::TcpStream;
|
||||
|
||||
// Minimal RESP helpers
|
||||
fn arr(parts: &[&str]) -> String {
|
||||
let mut out = format!("*{}\r\n", parts.len());
|
||||
for p in parts {
|
||||
out.push_str(&format!("${}\r\n{}\r\n", p.len(), p));
|
||||
}
|
||||
out
|
||||
}
|
||||
fn read_reply(s: &mut TcpStream) -> String {
|
||||
let mut buf = [0u8; 65536];
|
||||
let n = s.read(&mut buf).unwrap();
|
||||
String::from_utf8_lossy(&buf[..n]).to_string()
|
||||
}
|
||||
fn parse_two_bulk(reply: &str) -> Option<(String,String)> {
|
||||
let mut lines = reply.split("\r\n");
|
||||
if lines.next()? != "*2" { return None; }
|
||||
let _n = lines.next()?;
|
||||
let a = lines.next()?.to_string();
|
||||
let _m = lines.next()?;
|
||||
let b = lines.next()?.to_string();
|
||||
Some((a,b))
|
||||
}
|
||||
fn parse_bulk(reply: &str) -> Option<String> {
|
||||
let mut lines = reply.split("\r\n");
|
||||
let hdr = lines.next()?;
|
||||
if !hdr.starts_with('$') { return None; }
|
||||
Some(lines.next()?.to_string())
|
||||
}
|
||||
fn parse_simple(reply: &str) -> Option<String> {
|
||||
let mut lines = reply.split("\r\n");
|
||||
let hdr = lines.next()?;
|
||||
if !hdr.starts_with('+') { return None; }
|
||||
Some(hdr[1..].to_string())
|
||||
}
|
||||
|
||||
fn main() {
|
||||
let mut args = std::env::args().skip(1);
|
||||
let host = args.next().unwrap_or_else(|| "127.0.0.1".into());
|
||||
let port = args.next().unwrap_or_else(|| "6379".into());
|
||||
let addr = format!("{host}:{port}");
|
||||
println!("Connecting to {addr}...");
|
||||
let mut s = TcpStream::connect(addr).expect("connect");
|
||||
|
||||
// Generate & persist X25519 enc keys under name "alice"
|
||||
s.write_all(arr(&["age","keygen","alice"]).as_bytes()).unwrap();
|
||||
let (_alice_recip, _alice_ident) = parse_two_bulk(&read_reply(&mut s)).expect("gen enc");
|
||||
|
||||
// Generate & persist Ed25519 signing key under name "signer"
|
||||
s.write_all(arr(&["age","signkeygen","signer"]).as_bytes()).unwrap();
|
||||
let (_verify, _secret) = parse_two_bulk(&read_reply(&mut s)).expect("gen sign");
|
||||
|
||||
// Encrypt by name
|
||||
let msg = "hello from persistent keys";
|
||||
s.write_all(arr(&["age","encryptname","alice", msg]).as_bytes()).unwrap();
|
||||
let ct_b64 = parse_bulk(&read_reply(&mut s)).expect("ct b64");
|
||||
println!("ciphertext b64: {}", ct_b64);
|
||||
|
||||
// Decrypt by name
|
||||
s.write_all(arr(&["age","decryptname","alice", &ct_b64]).as_bytes()).unwrap();
|
||||
let pt = parse_bulk(&read_reply(&mut s)).expect("pt");
|
||||
assert_eq!(pt, msg);
|
||||
println!("decrypted ok");
|
||||
|
||||
// Sign by name
|
||||
s.write_all(arr(&["age","signname","signer", msg]).as_bytes()).unwrap();
|
||||
let sig_b64 = parse_bulk(&read_reply(&mut s)).expect("sig b64");
|
||||
|
||||
// Verify by name
|
||||
s.write_all(arr(&["age","verifyname","signer", msg, &sig_b64]).as_bytes()).unwrap();
|
||||
let ok = parse_simple(&read_reply(&mut s)).expect("verify");
|
||||
assert_eq!(ok, "1");
|
||||
println!("signature verified");
|
||||
|
||||
// List names
|
||||
s.write_all(arr(&["age","list"]).as_bytes()).unwrap();
|
||||
let list = read_reply(&mut s);
|
||||
println!("LIST -> {list}");
|
||||
|
||||
println!("✔ persistent AGE workflow complete.");
|
||||
}
|
1251
specs/backgroundinfo/lance.md
Normal file
1251
specs/backgroundinfo/lance.md
Normal file
File diff suppressed because it is too large
Load Diff
6847
specs/backgroundinfo/lancedb.md
Normal file
6847
specs/backgroundinfo/lancedb.md
Normal file
File diff suppressed because it is too large
Load Diff
735
specs/lance_implementation.md
Normal file
735
specs/lance_implementation.md
Normal file
@@ -0,0 +1,735 @@
|
||||
Looking at your request to ensure embedding happens with an external embedding provider configured in Redis at `config:core:aiembed:url`, I'll modify the implementation to use an external embedding service instead of local models.
|
||||
|
||||
## Updated Implementation with External Embedding Provider
|
||||
|
||||
### 1. Update Dependencies in `Cargo.toml`
|
||||
|
||||
```toml
|
||||
[dependencies]
|
||||
# ... existing dependencies ...
|
||||
lance = "0.18"
|
||||
lance-index = "0.18"
|
||||
lance-linalg = "0.18"
|
||||
arrow = "52"
|
||||
arrow-array = "52"
|
||||
arrow-schema = "52"
|
||||
parquet = "52"
|
||||
uuid = { version = "1.10", features = ["v4"] }
|
||||
reqwest = { version = "0.11", features = ["json"] }
|
||||
serde = { version = "1.0", features = ["derive"] }
|
||||
serde_json = "1.0"
|
||||
base64 = "0.22"
|
||||
image = "0.25"
|
||||
```
|
||||
|
||||
### 2. Create Enhanced Lance Module with External Embedding
|
||||
|
||||
Create `src/lance_store.rs`:
|
||||
|
||||
```rust
|
||||
use std::collections::HashMap;
|
||||
use std::path::PathBuf;
|
||||
use std::sync::Arc;
|
||||
use tokio::sync::RwLock;
|
||||
|
||||
use arrow::array::{Float32Array, StringArray, BinaryArray, ArrayRef};
|
||||
use arrow::datatypes::{DataType, Field, Schema};
|
||||
use arrow::record_batch::RecordBatch;
|
||||
use lance::dataset::{Dataset, WriteParams, WriteMode};
|
||||
use lance::index::vector::VectorIndexParams;
|
||||
use lance_index::vector::pq::PQBuildParams;
|
||||
use lance_index::vector::ivf::IvfBuildParams;
|
||||
|
||||
use serde::{Deserialize, Serialize};
|
||||
use crate::error::DBError;
|
||||
use crate::cmd::Protocol;
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
struct EmbeddingRequest {
|
||||
texts: Option<Vec<String>>,
|
||||
images: Option<Vec<String>>, // base64 encoded
|
||||
model: Option<String>,
|
||||
}
|
||||
|
||||
#[derive(Debug, Serialize, Deserialize)]
|
||||
struct EmbeddingResponse {
|
||||
embeddings: Vec<Vec<f32>>,
|
||||
model: String,
|
||||
usage: Option<HashMap<String, u32>>,
|
||||
}
|
||||
|
||||
pub struct LanceStore {
|
||||
datasets: Arc<RwLock<HashMap<String, Arc<Dataset>>>>,
|
||||
data_dir: PathBuf,
|
||||
http_client: reqwest::Client,
|
||||
}
|
||||
|
||||
impl LanceStore {
|
||||
pub async fn new(data_dir: PathBuf) -> Result<Self, DBError> {
|
||||
// Create data directory if it doesn't exist
|
||||
std::fs::create_dir_all(&data_dir)
|
||||
.map_err(|e| DBError(format!("Failed to create Lance data directory: {}", e)))?;
|
||||
|
||||
let http_client = reqwest::Client::builder()
|
||||
.timeout(std::time::Duration::from_secs(30))
|
||||
.build()
|
||||
.map_err(|e| DBError(format!("Failed to create HTTP client: {}", e)))?;
|
||||
|
||||
Ok(Self {
|
||||
datasets: Arc::new(RwLock::new(HashMap::new())),
|
||||
data_dir,
|
||||
http_client,
|
||||
})
|
||||
}
|
||||
|
||||
/// Get embedding service URL from Redis config
|
||||
async fn get_embedding_url(&self, server: &crate::server::Server) -> Result<String, DBError> {
|
||||
// Get the embedding URL from Redis config
|
||||
let key = "config:core:aiembed:url";
|
||||
|
||||
// Use HGET to retrieve the URL from Redis hash
|
||||
let cmd = crate::cmd::Cmd::HGet {
|
||||
key: key.to_string(),
|
||||
field: "url".to_string(),
|
||||
};
|
||||
|
||||
// Execute command to get the config
|
||||
let result = cmd.run(server).await?;
|
||||
|
||||
match result {
|
||||
Protocol::BulkString(url) => Ok(url),
|
||||
Protocol::SimpleString(url) => Ok(url),
|
||||
Protocol::Nil => Err(DBError(
|
||||
"Embedding service URL not configured. Set it with: HSET config:core:aiembed:url url <YOUR_EMBEDDING_SERVICE_URL>".to_string()
|
||||
)),
|
||||
_ => Err(DBError("Invalid embedding URL configuration".to_string())),
|
||||
}
|
||||
}
|
||||
|
||||
/// Call external embedding service
|
||||
async fn call_embedding_service(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
texts: Option<Vec<String>>,
|
||||
images: Option<Vec<String>>,
|
||||
) -> Result<Vec<Vec<f32>>, DBError> {
|
||||
let url = self.get_embedding_url(server).await?;
|
||||
|
||||
let request = EmbeddingRequest {
|
||||
texts,
|
||||
images,
|
||||
model: None, // Let the service use its default
|
||||
};
|
||||
|
||||
let response = self.http_client
|
||||
.post(&url)
|
||||
.json(&request)
|
||||
.send()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to call embedding service: {}", e)))?;
|
||||
|
||||
if !response.status().is_success() {
|
||||
let status = response.status();
|
||||
let error_text = response.text().await.unwrap_or_default();
|
||||
return Err(DBError(format!(
|
||||
"Embedding service returned error {}: {}",
|
||||
status, error_text
|
||||
)));
|
||||
}
|
||||
|
||||
let embedding_response: EmbeddingResponse = response
|
||||
.json()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to parse embedding response: {}", e)))?;
|
||||
|
||||
Ok(embedding_response.embeddings)
|
||||
}
|
||||
|
||||
pub async fn embed_text(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
texts: Vec<String>
|
||||
) -> Result<Vec<Vec<f32>>, DBError> {
|
||||
if texts.is_empty() {
|
||||
return Ok(Vec::new());
|
||||
}
|
||||
|
||||
self.call_embedding_service(server, Some(texts), None).await
|
||||
}
|
||||
|
||||
pub async fn embed_image(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
image_bytes: Vec<u8>
|
||||
) -> Result<Vec<f32>, DBError> {
|
||||
// Convert image bytes to base64
|
||||
let base64_image = base64::encode(&image_bytes);
|
||||
|
||||
let embeddings = self.call_embedding_service(
|
||||
server,
|
||||
None,
|
||||
Some(vec![base64_image])
|
||||
).await?;
|
||||
|
||||
embeddings.into_iter()
|
||||
.next()
|
||||
.ok_or_else(|| DBError("No embedding returned for image".to_string()))
|
||||
}
|
||||
|
||||
pub async fn create_dataset(
|
||||
&self,
|
||||
name: &str,
|
||||
schema: Schema,
|
||||
) -> Result<(), DBError> {
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
||||
|
||||
// Create empty dataset with schema
|
||||
let write_params = WriteParams {
|
||||
mode: WriteMode::Create,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
// Create an empty RecordBatch with the schema
|
||||
let empty_batch = RecordBatch::new_empty(Arc::new(schema));
|
||||
let batches = vec![empty_batch];
|
||||
|
||||
let dataset = Dataset::write(
|
||||
batches,
|
||||
dataset_path.to_str().unwrap(),
|
||||
Some(write_params)
|
||||
).await
|
||||
.map_err(|e| DBError(format!("Failed to create dataset: {}", e)))?;
|
||||
|
||||
let mut datasets = self.datasets.write().await;
|
||||
datasets.insert(name.to_string(), Arc::new(dataset));
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn write_vectors(
|
||||
&self,
|
||||
dataset_name: &str,
|
||||
vectors: Vec<Vec<f32>>,
|
||||
metadata: Option<HashMap<String, Vec<String>>>,
|
||||
) -> Result<usize, DBError> {
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", dataset_name));
|
||||
|
||||
// Open or get cached dataset
|
||||
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
||||
|
||||
// Build RecordBatch
|
||||
let num_vectors = vectors.len();
|
||||
if num_vectors == 0 {
|
||||
return Ok(0);
|
||||
}
|
||||
|
||||
let dim = vectors.first()
|
||||
.ok_or_else(|| DBError("Empty vectors".to_string()))?
|
||||
.len();
|
||||
|
||||
// Flatten vectors
|
||||
let flat_vectors: Vec<f32> = vectors.into_iter().flatten().collect();
|
||||
let vector_array = Float32Array::from(flat_vectors);
|
||||
let vector_array = arrow::array::FixedSizeListArray::try_new_from_values(
|
||||
vector_array,
|
||||
dim as i32
|
||||
).map_err(|e| DBError(format!("Failed to create vector array: {}", e)))?;
|
||||
|
||||
let mut arrays: Vec<ArrayRef> = vec![Arc::new(vector_array)];
|
||||
let mut fields = vec![Field::new(
|
||||
"vector",
|
||||
DataType::FixedSizeList(
|
||||
Arc::new(Field::new("item", DataType::Float32, true)),
|
||||
dim as i32
|
||||
),
|
||||
false
|
||||
)];
|
||||
|
||||
// Add metadata columns if provided
|
||||
if let Some(metadata) = metadata {
|
||||
for (key, values) in metadata {
|
||||
if values.len() != num_vectors {
|
||||
return Err(DBError(format!(
|
||||
"Metadata field '{}' has {} values but expected {}",
|
||||
key, values.len(), num_vectors
|
||||
)));
|
||||
}
|
||||
let array = StringArray::from(values);
|
||||
arrays.push(Arc::new(array));
|
||||
fields.push(Field::new(&key, DataType::Utf8, true));
|
||||
}
|
||||
}
|
||||
|
||||
let schema = Arc::new(Schema::new(fields));
|
||||
let batch = RecordBatch::try_new(schema, arrays)
|
||||
.map_err(|e| DBError(format!("Failed to create RecordBatch: {}", e)))?;
|
||||
|
||||
// Append to dataset
|
||||
let write_params = WriteParams {
|
||||
mode: WriteMode::Append,
|
||||
..Default::default()
|
||||
};
|
||||
|
||||
Dataset::write(
|
||||
vec![batch],
|
||||
dataset_path.to_str().unwrap(),
|
||||
Some(write_params)
|
||||
).await
|
||||
.map_err(|e| DBError(format!("Failed to write to dataset: {}", e)))?;
|
||||
|
||||
// Refresh cached dataset
|
||||
let mut datasets = self.datasets.write().await;
|
||||
datasets.remove(dataset_name);
|
||||
|
||||
Ok(num_vectors)
|
||||
}
|
||||
|
||||
pub async fn search_vectors(
|
||||
&self,
|
||||
dataset_name: &str,
|
||||
query_vector: Vec<f32>,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
|
||||
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
||||
|
||||
// Build query
|
||||
let mut query = dataset.scan();
|
||||
query = query.nearest(
|
||||
"vector",
|
||||
&query_vector,
|
||||
k,
|
||||
).map_err(|e| DBError(format!("Failed to build search query: {}", e)))?;
|
||||
|
||||
if let Some(nprobes) = nprobes {
|
||||
query = query.nprobes(nprobes);
|
||||
}
|
||||
|
||||
if let Some(refine) = refine_factor {
|
||||
query = query.refine_factor(refine);
|
||||
}
|
||||
|
||||
// Execute search
|
||||
let results = query
|
||||
.try_into_stream()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to execute search: {}", e)))?
|
||||
.try_collect::<Vec<_>>()
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to collect results: {}", e)))?;
|
||||
|
||||
// Process results
|
||||
let mut output = Vec::new();
|
||||
for batch in results {
|
||||
// Get distances
|
||||
let distances = batch
|
||||
.column_by_name("_distance")
|
||||
.ok_or_else(|| DBError("No distance column".to_string()))?
|
||||
.as_any()
|
||||
.downcast_ref::<Float32Array>()
|
||||
.ok_or_else(|| DBError("Invalid distance type".to_string()))?;
|
||||
|
||||
// Get metadata
|
||||
for i in 0..batch.num_rows() {
|
||||
let distance = distances.value(i);
|
||||
let mut metadata = HashMap::new();
|
||||
|
||||
for field in batch.schema().fields() {
|
||||
if field.name() != "vector" && field.name() != "_distance" {
|
||||
if let Some(col) = batch.column_by_name(field.name()) {
|
||||
if let Some(str_array) = col.as_any().downcast_ref::<StringArray>() {
|
||||
if !str_array.is_null(i) {
|
||||
metadata.insert(
|
||||
field.name().to_string(),
|
||||
str_array.value(i).to_string()
|
||||
);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
output.push((distance, metadata));
|
||||
}
|
||||
}
|
||||
|
||||
Ok(output)
|
||||
}
|
||||
|
||||
pub async fn store_multimodal(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
dataset_name: &str,
|
||||
text: Option<String>,
|
||||
image_bytes: Option<Vec<u8>>,
|
||||
metadata: HashMap<String, String>,
|
||||
) -> Result<String, DBError> {
|
||||
// Generate ID
|
||||
let id = uuid::Uuid::new_v4().to_string();
|
||||
|
||||
// Generate embeddings using external service
|
||||
let embedding = if let Some(text) = text.as_ref() {
|
||||
self.embed_text(server, vec![text.clone()]).await?
|
||||
.into_iter()
|
||||
.next()
|
||||
.ok_or_else(|| DBError("No embedding returned".to_string()))?
|
||||
} else if let Some(img) = image_bytes.as_ref() {
|
||||
self.embed_image(server, img.clone()).await?
|
||||
} else {
|
||||
return Err(DBError("No text or image provided".to_string()));
|
||||
};
|
||||
|
||||
// Prepare metadata
|
||||
let mut full_metadata = metadata;
|
||||
full_metadata.insert("id".to_string(), id.clone());
|
||||
if let Some(text) = text {
|
||||
full_metadata.insert("text".to_string(), text);
|
||||
}
|
||||
if let Some(img) = image_bytes {
|
||||
full_metadata.insert("image_base64".to_string(), base64::encode(img));
|
||||
}
|
||||
|
||||
// Convert metadata to column vectors
|
||||
let mut metadata_cols = HashMap::new();
|
||||
for (key, value) in full_metadata {
|
||||
metadata_cols.insert(key, vec![value]);
|
||||
}
|
||||
|
||||
// Write to dataset
|
||||
self.write_vectors(dataset_name, vec![embedding], Some(metadata_cols)).await?;
|
||||
|
||||
Ok(id)
|
||||
}
|
||||
|
||||
pub async fn search_with_text(
|
||||
&self,
|
||||
server: &crate::server::Server,
|
||||
dataset_name: &str,
|
||||
query_text: String,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
) -> Result<Vec<(f32, HashMap<String, String>)>, DBError> {
|
||||
// Embed the query text using external service
|
||||
let embeddings = self.embed_text(server, vec![query_text]).await?;
|
||||
let query_vector = embeddings.into_iter()
|
||||
.next()
|
||||
.ok_or_else(|| DBError("No embedding returned for query".to_string()))?;
|
||||
|
||||
// Search with the embedding
|
||||
self.search_vectors(dataset_name, query_vector, k, nprobes, refine_factor).await
|
||||
}
|
||||
|
||||
pub async fn create_index(
|
||||
&self,
|
||||
dataset_name: &str,
|
||||
index_type: &str,
|
||||
num_partitions: Option<usize>,
|
||||
num_sub_vectors: Option<usize>,
|
||||
) -> Result<(), DBError> {
|
||||
let dataset = self.get_or_open_dataset(dataset_name).await?;
|
||||
|
||||
let mut params = VectorIndexParams::default();
|
||||
|
||||
match index_type.to_uppercase().as_str() {
|
||||
"IVF_PQ" => {
|
||||
params.ivf = IvfBuildParams {
|
||||
num_partitions: num_partitions.unwrap_or(256),
|
||||
..Default::default()
|
||||
};
|
||||
params.pq = PQBuildParams {
|
||||
num_sub_vectors: num_sub_vectors.unwrap_or(16),
|
||||
..Default::default()
|
||||
};
|
||||
}
|
||||
_ => return Err(DBError(format!("Unsupported index type: {}", index_type))),
|
||||
}
|
||||
|
||||
dataset.create_index(
|
||||
&["vector"],
|
||||
lance::index::IndexType::Vector,
|
||||
None,
|
||||
¶ms,
|
||||
true
|
||||
).await
|
||||
.map_err(|e| DBError(format!("Failed to create index: {}", e)))?;
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
async fn get_or_open_dataset(&self, name: &str) -> Result<Arc<Dataset>, DBError> {
|
||||
let mut datasets = self.datasets.write().await;
|
||||
|
||||
if let Some(dataset) = datasets.get(name) {
|
||||
return Ok(dataset.clone());
|
||||
}
|
||||
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
||||
if !dataset_path.exists() {
|
||||
return Err(DBError(format!("Dataset '{}' does not exist", name)));
|
||||
}
|
||||
|
||||
let dataset = Dataset::open(dataset_path.to_str().unwrap())
|
||||
.await
|
||||
.map_err(|e| DBError(format!("Failed to open dataset: {}", e)))?;
|
||||
|
||||
let dataset = Arc::new(dataset);
|
||||
datasets.insert(name.to_string(), dataset.clone());
|
||||
|
||||
Ok(dataset)
|
||||
}
|
||||
|
||||
pub async fn list_datasets(&self) -> Result<Vec<String>, DBError> {
|
||||
let mut datasets = Vec::new();
|
||||
|
||||
let entries = std::fs::read_dir(&self.data_dir)
|
||||
.map_err(|e| DBError(format!("Failed to read data directory: {}", e)))?;
|
||||
|
||||
for entry in entries {
|
||||
let entry = entry.map_err(|e| DBError(format!("Failed to read entry: {}", e)))?;
|
||||
let path = entry.path();
|
||||
|
||||
if path.is_dir() {
|
||||
if let Some(name) = path.file_name() {
|
||||
if let Some(name_str) = name.to_str() {
|
||||
if name_str.ends_with(".lance") {
|
||||
let dataset_name = name_str.trim_end_matches(".lance");
|
||||
datasets.push(dataset_name.to_string());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Ok(datasets)
|
||||
}
|
||||
|
||||
pub async fn drop_dataset(&self, name: &str) -> Result<(), DBError> {
|
||||
// Remove from cache
|
||||
let mut datasets = self.datasets.write().await;
|
||||
datasets.remove(name);
|
||||
|
||||
// Delete from disk
|
||||
let dataset_path = self.data_dir.join(format!("{}.lance", name));
|
||||
if dataset_path.exists() {
|
||||
std::fs::remove_dir_all(dataset_path)
|
||||
.map_err(|e| DBError(format!("Failed to delete dataset: {}", e)))?;
|
||||
}
|
||||
|
||||
Ok(())
|
||||
}
|
||||
|
||||
pub async fn get_dataset_info(&self, name: &str) -> Result<HashMap<String, String>, DBError> {
|
||||
let dataset = self.get_or_open_dataset(name).await?;
|
||||
|
||||
let mut info = HashMap::new();
|
||||
info.insert("name".to_string(), name.to_string());
|
||||
info.insert("version".to_string(), dataset.version().to_string());
|
||||
info.insert("num_rows".to_string(), dataset.count_rows().await?.to_string());
|
||||
|
||||
// Get schema info
|
||||
let schema = dataset.schema();
|
||||
let fields: Vec<String> = schema.fields()
|
||||
.iter()
|
||||
.map(|f| format!("{}:{}", f.name(), f.data_type()))
|
||||
.collect();
|
||||
info.insert("schema".to_string(), fields.join(", "));
|
||||
|
||||
Ok(info)
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
### 3. Update Command Implementations
|
||||
|
||||
Update the command implementations to pass the server reference for embedding service access:
|
||||
|
||||
```rust
|
||||
// In cmd.rs, update the lance command implementations
|
||||
|
||||
async fn lance_store_cmd(
|
||||
server: &Server,
|
||||
dataset: &str,
|
||||
text: Option<String>,
|
||||
image_base64: Option<String>,
|
||||
metadata: HashMap<String, String>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let lance_store = server.lance_store()?;
|
||||
|
||||
// Decode image if provided
|
||||
let image_bytes = if let Some(b64) = image_base64 {
|
||||
Some(base64::decode(b64).map_err(|e|
|
||||
DBError(format!("Invalid base64 image: {}", e)))?)
|
||||
} else {
|
||||
None
|
||||
};
|
||||
|
||||
// Pass server reference for embedding service access
|
||||
let id = lance_store.store_multimodal(
|
||||
server, // Pass server to access Redis config
|
||||
dataset,
|
||||
text,
|
||||
image_bytes,
|
||||
metadata,
|
||||
).await?;
|
||||
|
||||
Ok(Protocol::BulkString(id))
|
||||
}
|
||||
|
||||
async fn lance_embed_text_cmd(
|
||||
server: &Server,
|
||||
texts: &[String],
|
||||
) -> Result<Protocol, DBError> {
|
||||
let lance_store = server.lance_store()?;
|
||||
|
||||
// Pass server reference for embedding service access
|
||||
let embeddings = lance_store.embed_text(server, texts.to_vec()).await?;
|
||||
|
||||
// Return as array of vectors
|
||||
let mut output = Vec::new();
|
||||
for embedding in embeddings {
|
||||
let vector_str = format!("[{}]",
|
||||
embedding.iter()
|
||||
.map(|f| f.to_string())
|
||||
.collect::<Vec<_>>()
|
||||
.join(",")
|
||||
);
|
||||
output.push(Protocol::BulkString(vector_str));
|
||||
}
|
||||
|
||||
Ok(Protocol::Array(output))
|
||||
}
|
||||
|
||||
async fn lance_search_text_cmd(
|
||||
server: &Server,
|
||||
dataset: &str,
|
||||
query_text: &str,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
) -> Result<Protocol, DBError> {
|
||||
let lance_store = server.lance_store()?;
|
||||
|
||||
// Search using text query (will be embedded automatically)
|
||||
let results = lance_store.search_with_text(
|
||||
server,
|
||||
dataset,
|
||||
query_text.to_string(),
|
||||
k,
|
||||
nprobes,
|
||||
refine_factor,
|
||||
).await?;
|
||||
|
||||
// Format results
|
||||
let mut output = Vec::new();
|
||||
for (distance, metadata) in results {
|
||||
let metadata_json = serde_json::to_string(&metadata)
|
||||
.unwrap_or_else(|_| "{}".to_string());
|
||||
|
||||
output.push(Protocol::Array(vec![
|
||||
Protocol::BulkString(distance.to_string()),
|
||||
Protocol::BulkString(metadata_json),
|
||||
]));
|
||||
}
|
||||
|
||||
Ok(Protocol::Array(output))
|
||||
}
|
||||
|
||||
// Add new command for text-based search
|
||||
pub enum Cmd {
|
||||
// ... existing commands ...
|
||||
LanceSearchText {
|
||||
dataset: String,
|
||||
query_text: String,
|
||||
k: usize,
|
||||
nprobes: Option<usize>,
|
||||
refine_factor: Option<usize>,
|
||||
},
|
||||
}
|
||||
```
|
||||
|
||||
## Usage Examples
|
||||
|
||||
### 1. Configure the Embedding Service
|
||||
|
||||
First, users need to configure the embedding service URL:
|
||||
|
||||
```bash
|
||||
# Configure the embedding service endpoint
|
||||
redis-cli> HSET config:core:aiembed:url url "http://localhost:8000/embeddings"
|
||||
OK
|
||||
|
||||
# Or use a cloud service
|
||||
redis-cli> HSET config:core:aiembed:url url "https://api.openai.com/v1/embeddings"
|
||||
OK
|
||||
```
|
||||
|
||||
### 2. Use Lance Commands with Automatic External Embedding
|
||||
|
||||
```bash
|
||||
# Create a dataset
|
||||
redis-cli> LANCE.CREATE products DIM 1536 SCHEMA name:string price:float category:string
|
||||
OK
|
||||
|
||||
# Store text with automatic embedding (calls external service)
|
||||
redis-cli> LANCE.STORE products TEXT "Wireless noise-canceling headphones with 30-hour battery" name:AirPods price:299.99 category:Electronics
|
||||
"uuid-123-456"
|
||||
|
||||
# Search using text query (automatically embeds the query)
|
||||
redis-cli> LANCE.SEARCH.TEXT products "best headphones for travel" K 5
|
||||
1) "0.92"
|
||||
2) "{\"id\":\"uuid-123\",\"name\":\"AirPods\",\"price\":\"299.99\"}"
|
||||
|
||||
# Get embeddings directly
|
||||
redis-cli> LANCE.EMBED.TEXT "This text will be embedded"
|
||||
1) "[0.123, 0.456, 0.789, ...]"
|
||||
```
|
||||
|
||||
## External Embedding Service API Specification
|
||||
|
||||
The external embedding service should accept POST requests with this format:
|
||||
|
||||
```json
|
||||
// Request
|
||||
{
|
||||
"texts": ["text1", "text2"], // Optional
|
||||
"images": ["base64_img1"], // Optional
|
||||
"model": "text-embedding-ada-002" // Optional
|
||||
}
|
||||
|
||||
// Response
|
||||
{
|
||||
"embeddings": [[0.1, 0.2, ...], [0.3, 0.4, ...]],
|
||||
"model": "text-embedding-ada-002",
|
||||
"usage": {
|
||||
"prompt_tokens": 100,
|
||||
"total_tokens": 100
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
## Error Handling
|
||||
|
||||
The implementation includes comprehensive error handling:
|
||||
|
||||
1. **Missing Configuration**: Clear error message if embedding URL not configured
|
||||
2. **Service Failures**: Graceful handling of embedding service errors
|
||||
3. **Timeout Protection**: 30-second timeout for embedding requests
|
||||
4. **Retry Logic**: Could be added for resilience
|
||||
|
||||
## Benefits of This Approach
|
||||
|
||||
1. **Flexibility**: Supports any embedding service with compatible API
|
||||
2. **Cost Control**: Use your preferred embedding provider
|
||||
3. **Scalability**: Embedding service can be scaled independently
|
||||
4. **Consistency**: All embeddings use the same configured service
|
||||
5. **Security**: API keys and endpoints stored securely in Redis
|
||||
|
||||
This implementation ensures that all embedding operations go through the external service configured in Redis, providing a clean separation between the vector database functionality and the embedding generation.
|
||||
|
||||
|
||||
TODO EXTRA:
|
||||
|
||||
- secret for the embedding service API key
|
||||
|
Reference in New Issue
Block a user