benchmarking

This commit is contained in:
Maxime Van Hees
2025-10-30 11:17:26 +01:00
parent 592b6c1ea9
commit 9136e5f3c0
16 changed files with 3611 additions and 0 deletions

258
scripts/compare_backends.py Executable file
View File

@@ -0,0 +1,258 @@
#!/usr/bin/env python3
"""
Compare performance between redb and sled backends.
"""
import json
import csv
import sys
from typing import Dict, List, Any
from pathlib import Path
def load_results(input_file: str) -> List[Dict[str, Any]]:
"""Load benchmark results from CSV or JSON file."""
path = Path(input_file)
if not path.exists():
print(f"Error: File not found: {input_file}", file=sys.stderr)
return []
if path.suffix == '.json':
with open(input_file, 'r') as f:
data = json.load(f)
return data.get('benchmarks', [])
elif path.suffix == '.csv':
results = []
with open(input_file, 'r') as f:
reader = csv.DictReader(f)
for row in reader:
# Convert numeric fields
row['mean_ns'] = float(row.get('mean_ns', 0))
row['median_ns'] = float(row.get('median_ns', 0))
row['throughput_ops_sec'] = float(row.get('throughput_ops_sec', 0))
results.append(row)
return results
else:
print(f"Error: Unsupported file format: {path.suffix}", file=sys.stderr)
return []
def group_by_operation(results: List[Dict[str, Any]]) -> Dict[str, Dict[str, Dict]]:
"""Group results by operation and backend."""
grouped = {}
for result in results:
operation = result.get('operation', result.get('name', ''))
backend = result.get('backend', '')
if not operation or not backend:
continue
if operation not in grouped:
grouped[operation] = {}
grouped[operation][backend] = result
return grouped
def calculate_speedup(redb_value: float, sled_value: float) -> float:
"""Calculate speedup factor (positive means redb is faster)."""
if sled_value == 0:
return 0
return sled_value / redb_value
def format_duration(nanos: float) -> str:
"""Format duration in human-readable format."""
if nanos < 1_000:
return f"{nanos:.0f} ns"
elif nanos < 1_000_000:
return f"{nanos / 1_000:.2f} µs"
elif nanos < 1_000_000_000:
return f"{nanos / 1_000_000:.2f} ms"
else:
return f"{nanos / 1_000_000_000:.2f} s"
def print_comparison_table(grouped: Dict[str, Dict[str, Dict]]):
"""Print a comparison table of backends."""
print("\n" + "=" * 100)
print("BACKEND PERFORMANCE COMPARISON")
print("=" * 100)
print()
# Header
print(f"{'Operation':<30} {'redb (mean)':<15} {'sled (mean)':<15} {'Speedup':<12} {'Winner':<10}")
print("-" * 100)
redb_wins = 0
sled_wins = 0
total_comparisons = 0
for operation in sorted(grouped.keys()):
backends = grouped[operation]
if 'redb' in backends and 'sled' in backends:
redb_mean = backends['redb'].get('mean_ns', 0)
sled_mean = backends['sled'].get('mean_ns', 0)
speedup = calculate_speedup(redb_mean, sled_mean)
if speedup > 1.0:
winner = "redb"
redb_wins += 1
elif speedup < 1.0:
winner = "sled"
sled_wins += 1
else:
winner = "tie"
total_comparisons += 1
speedup_str = f"{speedup:.2f}x" if speedup != 0 else "N/A"
print(f"{operation:<30} {format_duration(redb_mean):<15} {format_duration(sled_mean):<15} "
f"{speedup_str:<12} {winner:<10}")
print("-" * 100)
print(f"\nSummary: redb wins: {redb_wins}, sled wins: {sled_wins}, total: {total_comparisons}")
if total_comparisons > 0:
redb_pct = (redb_wins / total_comparisons) * 100
sled_pct = (sled_wins / total_comparisons) * 100
print(f"Win rate: redb {redb_pct:.1f}%, sled {sled_pct:.1f}%")
def print_throughput_comparison(grouped: Dict[str, Dict[str, Dict]]):
"""Print throughput comparison."""
print("\n" + "=" * 100)
print("THROUGHPUT COMPARISON (ops/sec)")
print("=" * 100)
print()
print(f"{'Operation':<30} {'redb':<20} {'sled':<20} {'Difference':<15}")
print("-" * 100)
for operation in sorted(grouped.keys()):
backends = grouped[operation]
if 'redb' in backends and 'sled' in backends:
redb_throughput = backends['redb'].get('throughput_ops_sec', 0)
sled_throughput = backends['sled'].get('throughput_ops_sec', 0)
diff_pct = ((redb_throughput - sled_throughput) / sled_throughput * 100) if sled_throughput > 0 else 0
diff_str = f"{diff_pct:+.1f}%"
print(f"{operation:<30} {redb_throughput:>18,.0f} {sled_throughput:>18,.0f} {diff_str:>13}")
def generate_recommendations(grouped: Dict[str, Dict[str, Dict]]):
"""Generate recommendations based on benchmark results."""
print("\n" + "=" * 100)
print("RECOMMENDATIONS")
print("=" * 100)
print()
redb_strengths = []
sled_strengths = []
for operation, backends in grouped.items():
if 'redb' in backends and 'sled' in backends:
redb_mean = backends['redb'].get('mean_ns', 0)
sled_mean = backends['sled'].get('mean_ns', 0)
speedup = calculate_speedup(redb_mean, sled_mean)
if speedup > 1.2: # redb is >20% faster
redb_strengths.append((operation, speedup))
elif speedup < 0.8: # sled is >20% faster
sled_strengths.append((operation, 1/speedup))
print("Use redb when:")
if redb_strengths:
for op, speedup in sorted(redb_strengths, key=lambda x: x[1], reverse=True)[:5]:
print(f"{op}: {speedup:.2f}x faster than sled")
else:
print(" • No significant advantages found")
print("\nUse sled when:")
if sled_strengths:
for op, speedup in sorted(sled_strengths, key=lambda x: x[1], reverse=True)[:5]:
print(f"{op}: {speedup:.2f}x faster than redb")
else:
print(" • No significant advantages found")
print("\nGeneral guidelines:")
print(" • redb: Better for read-heavy workloads, predictable latency")
print(" • sled: Better for write-heavy workloads, memory efficiency")
def export_comparison(grouped: Dict[str, Dict[str, Dict]], output_file: str):
"""Export comparison to CSV."""
with open(output_file, 'w', newline='') as f:
fieldnames = ['operation', 'redb_mean_ns', 'sled_mean_ns', 'speedup',
'redb_throughput', 'sled_throughput', 'winner']
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for operation, backends in sorted(grouped.items()):
if 'redb' in backends and 'sled' in backends:
redb_mean = backends['redb'].get('mean_ns', 0)
sled_mean = backends['sled'].get('mean_ns', 0)
redb_throughput = backends['redb'].get('throughput_ops_sec', 0)
sled_throughput = backends['sled'].get('throughput_ops_sec', 0)
speedup = calculate_speedup(redb_mean, sled_mean)
winner = "redb" if speedup > 1.0 else "sled" if speedup < 1.0 else "tie"
writer.writerow({
'operation': operation,
'redb_mean_ns': int(redb_mean),
'sled_mean_ns': int(sled_mean),
'speedup': f"{speedup:.2f}",
'redb_throughput': f"{redb_throughput:.0f}",
'sled_throughput': f"{sled_throughput:.0f}",
'winner': winner
})
print(f"\nComparison exported to {output_file}")
def main():
if len(sys.argv) < 2:
print("Usage: python compare_backends.py <results_file> [--export comparison.csv]")
print("\nExample:")
print(" python compare_backends.py results.csv")
print(" python compare_backends.py results.json --export comparison.csv")
sys.exit(1)
input_file = sys.argv[1]
export_file = None
# Parse command line arguments
if '--export' in sys.argv:
idx = sys.argv.index('--export')
if idx + 1 < len(sys.argv):
export_file = sys.argv[idx + 1]
# Load results
print(f"Loading results from {input_file}...")
results = load_results(input_file)
if not results:
print("No results found!")
sys.exit(1)
print(f"Loaded {len(results)} benchmark results")
# Group by operation
grouped = group_by_operation(results)
if not grouped:
print("No comparable results found!")
sys.exit(1)
# Print comparisons
print_comparison_table(grouped)
print_throughput_comparison(grouped)
generate_recommendations(grouped)
# Export if requested
if export_file:
export_comparison(grouped, export_file)
if __name__ == '__main__':
main()

222
scripts/parse_results.py Executable file
View File

@@ -0,0 +1,222 @@
#!/usr/bin/env python3
"""
Parse Criterion benchmark results and export to CSV/JSON formats.
"""
import json
import csv
import sys
import os
from pathlib import Path
from typing import Dict, List, Any
def parse_criterion_json(criterion_dir: str) -> List[Dict[str, Any]]:
"""Parse Criterion benchmark results from the target directory."""
results = []
criterion_path = Path(criterion_dir)
if not criterion_path.exists():
print(f"Error: Criterion directory not found: {criterion_dir}", file=sys.stderr)
return results
# Find all benchmark.json files
for benchmark_file in criterion_path.rglob("new/benchmark.json"):
try:
with open(benchmark_file, 'r') as f:
data = json.load(f)
# Extract benchmark name from path
bench_name = str(benchmark_file.parent.parent.name)
# Extract metrics
result = {
'name': bench_name,
'mean_ns': data.get('mean', {}).get('point_estimate', 0),
'median_ns': data.get('median', {}).get('point_estimate', 0),
'std_dev_ns': data.get('std_dev', {}).get('point_estimate', 0),
}
# Calculate throughput
if result['mean_ns'] > 0:
result['throughput_ops_sec'] = 1_000_000_000 / result['mean_ns']
else:
result['throughput_ops_sec'] = 0
results.append(result)
except Exception as e:
print(f"Warning: Failed to parse {benchmark_file}: {e}", file=sys.stderr)
return results
def parse_benchmark_name(name: str) -> Dict[str, str]:
"""Parse benchmark name into components."""
parts = name.split('/')
result = {
'suite': parts[0] if len(parts) > 0 else '',
'category': parts[1] if len(parts) > 1 else '',
'operation': parts[2] if len(parts) > 2 else '',
'backend': '',
'parameter': ''
}
# Try to extract backend name
for part in parts:
if 'redb' in part.lower():
result['backend'] = 'redb'
break
elif 'sled' in part.lower():
result['backend'] = 'sled'
break
# Extract parameter (size, clients, etc.)
if len(parts) > 3:
result['parameter'] = parts[3]
return result
def export_to_csv(results: List[Dict[str, Any]], output_file: str):
"""Export results to CSV format."""
if not results:
print("No results to export", file=sys.stderr)
return
fieldnames = ['name', 'backend', 'operation', 'mean_ns', 'median_ns',
'std_dev_ns', 'throughput_ops_sec']
with open(output_file, 'w', newline='') as f:
writer = csv.DictWriter(f, fieldnames=fieldnames)
writer.writeheader()
for result in results:
parsed = parse_benchmark_name(result['name'])
row = {
'name': result['name'],
'backend': parsed['backend'],
'operation': parsed['operation'],
'mean_ns': int(result['mean_ns']),
'median_ns': int(result['median_ns']),
'std_dev_ns': int(result['std_dev_ns']),
'throughput_ops_sec': f"{result['throughput_ops_sec']:.2f}"
}
writer.writerow(row)
print(f"Exported {len(results)} results to {output_file}")
def export_to_json(results: List[Dict[str, Any]], output_file: str):
"""Export results to JSON format."""
if not results:
print("No results to export", file=sys.stderr)
return
# Enhance results with parsed information
enhanced_results = []
for result in results:
parsed = parse_benchmark_name(result['name'])
enhanced = {**result, **parsed}
enhanced_results.append(enhanced)
output = {
'benchmarks': enhanced_results,
'summary': {
'total_benchmarks': len(results),
'backends': list(set(r.get('backend', '') for r in enhanced_results if r.get('backend')))
}
}
with open(output_file, 'w') as f:
json.dump(output, f, indent=2)
print(f"Exported {len(results)} results to {output_file}")
def print_summary(results: List[Dict[str, Any]]):
"""Print a summary of benchmark results."""
if not results:
print("No results to summarize")
return
print("\n=== Benchmark Summary ===\n")
print(f"Total benchmarks: {len(results)}")
# Group by backend
backends = {}
for result in results:
parsed = parse_benchmark_name(result['name'])
backend = parsed['backend']
if backend:
if backend not in backends:
backends[backend] = []
backends[backend].append(result)
for backend, bench_results in backends.items():
print(f"\n{backend.upper()}:")
print(f" Benchmarks: {len(bench_results)}")
if bench_results:
mean_throughput = sum(r['throughput_ops_sec'] for r in bench_results) / len(bench_results)
print(f" Avg throughput: {mean_throughput:.2f} ops/sec")
fastest = max(bench_results, key=lambda x: x['throughput_ops_sec'])
print(f" Fastest: {fastest['name']} ({fastest['throughput_ops_sec']:.2f} ops/sec)")
def main():
if len(sys.argv) < 2:
print("Usage: python parse_results.py <criterion_dir> [--csv output.csv] [--json output.json]")
print("\nExample:")
print(" python parse_results.py target/criterion --csv results.csv --json results.json")
sys.exit(1)
criterion_dir = sys.argv[1]
# Parse command line arguments
csv_output = None
json_output = None
i = 2
while i < len(sys.argv):
if sys.argv[i] == '--csv' and i + 1 < len(sys.argv):
csv_output = sys.argv[i + 1]
i += 2
elif sys.argv[i] == '--json' and i + 1 < len(sys.argv):
json_output = sys.argv[i + 1]
i += 2
else:
i += 1
# Parse results
print(f"Parsing benchmark results from {criterion_dir}...")
results = parse_criterion_json(criterion_dir)
if not results:
print("No benchmark results found!")
sys.exit(1)
# Export results
if csv_output:
export_to_csv(results, csv_output)
if json_output:
export_to_json(results, json_output)
# Print summary
print_summary(results)
# If no output specified, print to stdout
if not csv_output and not json_output:
print("\n=== CSV Output ===\n")
import io
output = io.StringIO()
fieldnames = ['name', 'mean_ns', 'median_ns', 'throughput_ops_sec']
writer = csv.DictWriter(output, fieldnames=fieldnames)
writer.writeheader()
for result in results:
writer.writerow({
'name': result['name'],
'mean_ns': int(result['mean_ns']),
'median_ns': int(result['median_ns']),
'throughput_ops_sec': f"{result['throughput_ops_sec']:.2f}"
})
print(output.getvalue())
if __name__ == '__main__':
main()