## Objects Used | Component | What it **stores** | Where it lives (Redis key) | Main responsibilities | |------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | **Actor** | Public key, reachable addresses, timestamps | `actor:` (hash) | An identity that can request work, receive results and act as an administrator of a *Context*. | | **Context**| Permission lists (`admins`, `readers`, `executors`), timestamps | `context:` (hash) | An isolated “tenant” – a separate Redis DB and filesystem area. All objects (flows, messages, jobs, runners) belonging to a given workflow are stored under this context. The permission lists control who may read, execute or administer the context. | | **Flow** | DAG of job IDs, env‑vars, result map, status, timestamps | `flow:` (hash) | A high‑level workflow created by a single **Actor**. It groups many **RunnerJob** objects, records their execution order, supplies common environment variables and aggregates the final result. | | **Message**| Payload, type (`job\|chat\|mail`), format (`html\|text\|md`), time‑outs, embedded **Job** objects, log stream, status, timestamps | `message::` (hash) | The transport unit that travels over **Mycelium** (the pub/sub/message bus). A message can contain a **RunnerJob** (or a list of jobs) and is queued in two generic Redis lists: `msg_out` (to be sent) and `msg_in` (already received). | | **Runner** | Public key, Mycelium address, topic name, type (`v\|python\|osis\|rust`), local flag, timestamps | `runner:` (hash) | The *worker* that actually executes **RunnerJob** scripts. It subscribes to a Mycelium topic (normally `runner`). If `local == true` the runner also consumes jobs directly from a Redis queue that is named after the script‑type suffix (`v`, `python`, …). | | **RunnerJob**| Script source, type (`osis\|sal\|v\|python`), env‑vars, prerequisites, dependencies, status, timestamps, result map | `job::` (hash) | A single executable unit. It lives inside a **Context**, belongs to a **Runner**, and is queued according to its `script_type` (e.g. `queue:python`). Its status moves through the lifecycle `dispatched → waiting_for_prerequisites → started → finished|error`. | > **Key idea:** All objects are persisted as *hashes*. Context‑scoped objects (**Context**, **Flow**, **Message**, **Runner**, **RunnerJob**) live in a **Redis** database dedicated to that context. **Actors are global** and are stored in Redis DB 0 under `actor:`. The system is completely **decentralised** – each actor owns its own context and can spin up as many runners as needed. Communication between actors, runners and the rest of the system happens over **Mycelium**, a message‑bus that uses Redis lists as queues. --- ## Interaction diagram (who talks to who) ### Sequence diagram – “Submit a flow and run it” ```mermaid %%{init: {"theme":"dark"}}%% sequenceDiagram participant A as Actor participant L as Local‑Context (Redis) participant M as Mycelium (msg_out / msg_in) participant R as Remote‑Context (Redis) participant W as Runner (worker) %% 1. Actor creates everything locally A->>L: create Flow + RunnerJob (J) A->>L: LPUSH msg_out Message{type=job, payload=J, target=Remote} %% 2. Mycelium transports the message M->>R: LPUSH msg_in (Message key) %% 3. Remote context materialises the job R->>R: HSET Message hash R->>R: HSET RunnerJob (J') // copy of payload R->>R: LPUSH queue:v (job key) %% 4. Runner consumes and executes W->>R: BRPOP queue:v (job key) W->>R: HSET job status = started W->>W: execute script W->>R: HSET job result + status = finished %% 5. Result is sent back W->>M: LPUSH msg_out Message{type=result, payload=result, target=Local} M->>L: LPUSH msg_in (result Message key) %% 6. Actor receives the result A->>L: RPOP msg_in → read result ``` ### 2.2 Component diagram – “Static view of objects & links” ```mermaid %%{init: {"theme":"dark"}}%% graph LR subgraph Redis["Redis (per Context)"] A[Actor] -->|stores| Ctx[Context] Ctx -->|stores| Fl[Flow] Ctx -->|stores| Msg[Message] Ctx -->|stores| Rnr[Runner] Ctx -->|stores| Job[RunnerJob] end subgraph Mycelium["Mycelium (Pub/Sub)"] MsgOut["queue:msg_out"] -->|outgoing| Mcel[Mycelium Bus] Mcel -->|incoming| MsgIn["queue:msg_in"] RnrTopic["topic:runnerX"] -->|subscribed by| Rnr queueV["queue:v"] -->|local jobs| Rnr queuePython["queue:python"] -->|local jobs| Rnr end A -->|creates / reads| Fl A -->|creates / reads| Msg A -->|creates / reads| Rnr A -->|creates / reads| Job Fl -->|references| Job Msg -->|may embed| Job Rnr -->|executes| Job Job -->|updates| Fl Msg -->|carries result back to| A ``` ### 2.3 Flow‑status life‑cycle (state diagram) ```mermaid %%{init: {"theme":"dark"}}%% stateDiagram-v2 [*] --> dispatched dispatched --> waiting_for_prerequisites : has prereqs waiting_for_prerequisites --> started : prereqs met dispatched --> started : no prereqs started --> finished : success started --> error : failure waiting_for_prerequisites --> error : timeout / impossible error --> [*] finished --> [*] ``` --- ## 3️⃣ Redis objects – concrete key & data layout All objects are stored as **hashes** (`HSET`). Below is a concise catalog that can be copied into a design doc. | Key pattern | Example | Fields (type) | Comments | |-------------|---------|---------------|----------| | `actor:${id}` | `actor:12` | `id` u32, `pubkey` str, `address` list\, `created_at` u32, `updated_at` u32 | One hash per actor. | | `context:${id}` | `context:7` | `id` u32, `admins` list\, `readers` list\, `executors` list\, `created_at` u32, `updated_at` u32 | Holds permission lists for a tenant. | | `flow:${id}` | `flow:33` | `id` u32, `caller_id` u32, `context_id` u32, `jobs` list\, `env_vars` map\, `result` map\, `created_at` u32, `updated_at` u32, `status` str (`dispatched|started|error|finished`) | | `message:${caller_id}:${id}` | `message:12:101` | `id` u32, `caller_id` u32, `context_id` u32, `message` str, `message_type` str (`job|chat|mail`), `message_format_type` str (`html|text|md`), `timeout` u32, `timeout_ack` u32, `timeout_result` u32, `job` list\ (serialized), `logs` list\, `created_at` u32, `updated_at` u32, `status` str (`dispatched|acknowledged|error|processed`) | | `runner:${id}` | `runner:20` | `id` u32, `pubkey` str, `address` str, `topic` str, `local` bool, `created_at` u32, `updated_at` u32 | | `job:${caller_id}:${id}` | `job:12:2001` | `id` u32, `caller_id` u32, `context_id` u32, `script` str, `script_type` str (`osis|sal|v|python`), `timeout` u32, `retries` u8, `env_vars` map\, `result` map\, `prerequisites` list\, `dependends` list\, `created_at` u32, `updated_at` u32, `status` str (`dispatched|waiting_for_prerequisites|started|error|finished`) | #### Queue objects (lists) | Queue name | Purpose | |------------|---------| | `msg_out` | **Outbound** generic queue – every `Message` that an actor wants to send is pushed here. | | `msg_in` | **Inbound** generic queue – every message received from Mycelium is placed here for the local consumer to process. | | `queue:${suffix}` (e.g. `queue:v`, `queue:python`) | Local job queues used by a **Runner** when `local == true`. The suffix comes from `ScriptType.queue_suffix()`. | --- ## 4️⃣ System specification (as a concise “specs” section) ### 4.1 Naming conventions * All Redis **hashes** are prefixed with the object name (`actor:`, `context:`, …). * All **queues** are simple Redis lists (`LPUSH` / `RPOP`). * **Message** keys embed both the *caller* and a locally unique *message id* – this guarantees global uniqueness across contexts. ### 4.2 Permissions & security * Only IDs present in `Context.admins` may **create** or **delete** any object inside that context. * `Context.readers` can **GET** any hash but not modify it. * `Context.executors` are allowed to **update** `RunnerJob.status`, `result` and to **pop** from local job queues. * Every `Actor` must present a `pubkey` that can be verified by the receiving side (Mycelium uses asymmetric crypto). ### 4.3 Message flow (publish / consume) Below is a **re‑written “Message flow (publish / consume)”** that reflects the real runtime components: * **Supervisor daemon** – runs on the node that owns the **Flow** (the *actor’s* side). It is the only process that ever **RPOP**s from the global `msg_out` queue, adds the proper routing information and hands the message to **Mycelium**. * **Mycelium** – the pure pub/sub/message‑bus. It never touches Redis directly; it only receives a *payload key* from the coordinator and delivers that key to the remote tenant’s `msg_in` list. * **Remote‑side runner / service** – consumes from its own `msg_in`, materialises the job and executes it. The table now uses the exact component names and adds a short note about the permission check that the coordinator performs before it releases a message. | # | Action (what the system does) | Component that performs it | Redis interaction (exact commands) | |---|-------------------------------|----------------------------|------------------------------------| | **1️⃣ Publish** | Actor creates a `Message` hash and **LPUSH**es its key onto the *outbound* queue. | **Actor** (client code) | `HSET message:12:101 …`
`LPUSH msg_out message:12:101` | | **2️⃣ Coordinate & route** | The **Supervisor daemon** (running at source) **RPOP**s the key, checks the actor’s permissions, adds the *target‑context* and *topic* fields, then forwards the key to Mycelium. | **Supervisor daemon** (per‑actor) | `RPOP msg_out` → (in‑process) → `LPUSH msg_out_coordinator ` (internal buffer) | | **3️⃣ Transport** | Mycelium receives the key, looks at `Message.message_type` (or the explicit `topic`) and pushes the key onto the *inbound* queue of the **remote** tenant. | **Mycelium bus** (network layer) | `LPUSH msg_in: ` | | **4️⃣ Consume** | The **Remote side** (runner or service) **RPOP**s from its `msg_in`, loads the full hash, verifies the actor’s signature and decides what to do based on `message_type`. | **Remote consumer** (runner / service | `RPOP msg_in:` → `HGETALL message:` | | **5️⃣ Job materialisation** | If `message_type == "job"` the consumer creates a **RunnerJob** entry inside the **remote** context, adds the job **key** to the proper *script‑type* queue (`queue:v`, `queue:python`, …). | **Remote consumer** | `HSET job:: …`
`LPUSH queue: job::` | | **6️⃣ Runner execution loop** | A **Runner** attached to that remote context **BRPOP**s from its script‑type queue, sets `status = started`, runs the script, writes `result` and final `status`. | **Runner** | `BRPOP queue:` → `HSET job:<…> status started` → … → `HSET job:<…> result … status finished` | | **7️⃣ Result notification** | The runner builds a new `Message` (type `chat`, `result`, …) and pushes it onto **msg_out** again. The **Supervisor daemon** on the *originating* side will later pick it up and route it back to the original actor. | **Runner** → **Supervisor (remote side)** → **Mycelium** → **Supervisor (origin side)** → **Actor** | `HSET message: …`
`LPUSH msg_out message:` (steps 2‑3 repeat in reverse direction) | --- ## Tiny end‑to‑end sequence (still simple enough to render) ```mermaid %%{init: {"theme":"dark"}}%% sequenceDiagram participant A as Actor participant L as Local‑Redis (Flow ctx) participant C as Supervisor daemon (local) participant M as Mycelium bus participant R as Remote‑Redis (target ctx) participant W as Runner (remote) %% 1️⃣ publish A->>L: HSET message:12:101 … A->>L: LPUSH msg_out message:12:101 %% 2️⃣ coordinate C->>L: RPOP msg_out C->>C: check permissions / add routing info C->>M: push key to Mycelium (msg_out_coordinator) %% 3️⃣ transport M->>R: LPUSH msg_in message:12:101 %% 4️⃣ consume R->>W: RPOP msg_in R->>R: HGETALL message:12:101 R->>R: verify signature alt message_type == job R->>R: HSET job:12:2001 … R->>R: LPUSH queue:v job:12:2001 end %% 5️⃣ runner loop W->>R: BRPOP queue:v (job:12:2001) W->>R: HSET job:12:2001 status started W->>W: execute script W->>R: HSET job:12:2001 result … status finished %% 6️⃣ result back W->>R: HSET message:12:900 result … W->>R: LPUSH msg_out message:12:900 C->>M: (coordinator on remote side) routes back M->>L: LPUSH msg_in message:12:900 A->>L: RPOP msg_in → read result ``` ## 5️⃣ What the **system** is trying to achieve | Goal | How it is realized | |------|--------------------| | **Decentralised execution** | Every *actor* owns a **Context**; any number of **Runners** can be attached to that context, possibly on different machines, and they all talk over the same Mycelium/Redis backend. | | **Fine‑grained permissions** | `Context.admins/readers/executors` enforce who can create, view or run jobs. | | **Loose coupling via messages** | All actions (job submission, result propagation, chat, mail …) use the generic `Message` object; the same transport pipeline handles all of them. | | **Workflow orchestration** | The **Flow** object models a DAG of jobs, tracks collective status and aggregates results, without needing a central scheduler. | | **Pluggable runtimes** | `ScriptType` and `RunnerType` let a runner choose the proper execution environment (V, Python, OSIS, Rust, …) – adding a new language only means adding a new `ScriptType` and a corresponding worker. | | **Observability** | `Log` arrays attached to a `Message` and the timestamps on every hash give a complete audit trail. | | **Resilience** | Jobs are idempotent hash entries; queues are persisted in Redis, and status changes are atomic (`HSET`). Retries and time‑outs guarantee eventual consistency. | --- ## 6️⃣ Diagram summary (quick visual cheat‑sheet) ```mermaid %%{init: {"theme":"dark"}}%% graph TD A[Actor] -->|creates| Ctx[Context] A -->|creates| Flow A -->|creates| Msg A -->|creates| Rnr[Runner] A -->|creates| Job[RunnerJob] subgraph Redis["Redis (per Context)"] Ctx --> A Ctx --> Flow Ctx --> Msg Ctx --> Rnr Ctx --> Job end Msg -->|push to| OutQ[msg_out] OutQ --> Myc[Mycelium Bus] Myc -->|deliver| InQ[msg_in] InQ --> Rnr Rnr -->|pop from| Qv["queue:v"] Rnr -->|pop from| Qpy["queue:python"] Rnr -->|updates| Job Job -->|updates| Flow Flow -->|result Message| Msg ```