initial commit

This commit is contained in:
Timur Gordon
2025-07-29 01:15:23 +02:00
commit 7d7ff0f0ab
108 changed files with 24713 additions and 0 deletions

View File

@@ -0,0 +1,2 @@
/target
/dist

View File

@@ -0,0 +1,94 @@
# `client_ws` Architecture
This document details the internal architecture of the `client_ws` crate, focusing on its cross-platform design, internal modules, and the mechanics of its authentication process.
## 1. Core Design Principles
The `client_ws` is built on the following principles:
- **Platform Abstraction**: The core client logic is written in a platform-agnostic way. Platform-specific details (like the WebSocket implementation) are abstracted behind a common interface.
- **Modularity**: The crate is divided into logical modules, with a clear separation of concerns between the main client logic, authentication procedures, and cryptographic utilities.
- **Asynchronous Operations**: All network I/O is asynchronous, using `async/await` to ensure the client is non-blocking and efficient.
- **Fluent Configuration**: A builder pattern (`CircleWsClientBuilder`) is used for clear and flexible client construction.
- **Self-Managing Clients**: Each `CircleWsClient` handles its own lifecycle including connection, authentication, keep-alive, and reconnection logic internally.
## 2. Cross-Platform Implementation
To support both native and WebAssembly (WASM) environments, `client_ws` uses conditional compilation (`#[cfg]`) to provide different implementations for the underlying WebSocket transport.
- **Native (`target_arch != "wasm32"`)**: The `tokio-tungstenite` crate is used for robust, `tokio`-based WebSocket communication.
- **WebAssembly (`target_arch = "wasm32"`)**: The `gloo-net` crate provides bindings to the browser's native `WebSocket` API.
This approach allows the `CircleWsClient` to expose a single, unified API while the underlying implementation details are handled transparently at compile time.
## 3. Module Structure
The `client_ws` crate is organized into the following key modules:
- **`lib.rs`**: The main module that defines the `CircleWsClientBuilder` and `CircleWsClient` structs and their public APIs. It orchestrates the entire communication flow.
- **`auth/`**: This module contains all the logic related to the `secp256k1` authentication flow.
- **`types.rs`**: Defines the core data structures used in authentication, such as `AuthError` and `AuthCredentials`.
- **`crypto_utils.rs`**: A self-contained utility module for handling all `secp256k1` cryptographic operations, including key generation, public key derivation, and message signing.
## 4. Self-Managing Client Architecture
Each `CircleWsClient` is designed to be completely self-managing, handling its entire lifecycle internally. This includes:
- **Connection Management**: Establishing and maintaining WebSocket connections
- **Authentication**: Automatic secp256k1 authentication flow when private keys are provided
- **Keep-Alive**: Periodic health checks to ensure connection stability
- **Reconnection**: Automatic reconnection with exponential backoff on connection failures
- **Connection Status Tracking**: Internal state management for connection health
### Connection Flow
The `connect()` method orchestrates the complete connection and authentication process:
```mermaid
sequenceDiagram
participant User as User Code
participant Builder as CircleWsClientBuilder
participant Client as CircleWsClient
participant CryptoUtils as auth::crypto_utils
participant WsActor as Server WebSocket Actor
User->>+Builder: new(url)
User->>+Builder: with_keypair(private_key)
User->>+Builder: build()
Builder-->>-User: client
User->>+Client: connect()
Note over Client: Self-managing connection process
Client->>Client: Establish WebSocket connection
Client->>Client: Start keep-alive loop
Client->>Client: Start reconnection handler
alt Has Private Key
Client->>Client: Check for private_key
Client->>+CryptoUtils: derive_public_key(private_key)
CryptoUtils-->>-Client: public_key
Note over Client: Request nonce via WebSocket
Client->>+WsActor: JSON-RPC "fetch_nonce" (pubkey)
WsActor-->>-Client: JSON-RPC Response (nonce)
Client->>+CryptoUtils: sign_message(private_key, nonce)
CryptoUtils-->>-Client: signature
Note over Client: Send credentials via WebSocket
Client->>+WsActor: JSON-RPC "authenticate" (pubkey, signature)
WsActor-->>-Client: JSON-RPC Response (authenticated: true/false)
end
Client-->>-User: Connection established and authenticated
```
### Self-Management Features
- **Automatic Keep-Alive**: Each client runs its own keep-alive loop to detect connection issues
- **Transparent Reconnection**: Failed connections are automatically retried with exponential backoff
- **Status Monitoring**: Connection status is tracked internally and can be queried via `is_connected()`
- **Resource Cleanup**: Proper cleanup of resources when clients are dropped
This architecture ensures that the cryptographic operations are isolated, the platform-specific code is cleanly separated, and each client is completely autonomous in managing its connection lifecycle.

2764
interfaces/websocket/client/Cargo.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,56 @@
[package]
name = "hero_websocket_client"
version = "0.1.0"
edition = "2021"
[[bin]]
name = "hero_websocket_client"
path = "cmd/main.rs"
[dependencies]
serde = { workspace = true }
serde_json = { workspace = true }
uuid = { workspace = true }
log = { workspace = true }
futures-channel = { workspace = true, features = ["sink"] }
futures-util = { workspace = true, features = ["sink"] }
thiserror = { workspace = true }
url = { workspace = true }
http = "0.2"
# Authentication dependencies
hex = { workspace = true }
rand = { workspace = true }
getrandom = { version = "0.2", features = ["js"] }
# Optional crypto dependencies (enabled by default)
k256 = { version = "0.13", features = ["ecdsa", "sha256"], optional = true }
sha3 = { workspace = true, optional = true }
# WASM-specific dependencies
[target.'cfg(target_arch = "wasm32")'.dependencies]
gloo-net = { version = "0.4.0", features = ["websocket"] }
gloo-timers = { version = "0.3.0", features = ["futures"] }
wasm-bindgen-futures = "0.4"
gloo-console = "0.3.0"
wasm-bindgen = "0.2"
js-sys = "0.3"
web-sys = { version = "0.3", features = ["Request", "RequestInit", "RequestMode", "Response", "Window"] }
# Native-specific dependencies
[target.'cfg(not(target_arch = "wasm32"))'.dependencies]
tokio-tungstenite = { version = "0.23.1", features = ["native-tls"] }
tokio = { workspace = true, features = ["rt", "macros", "time"] }
native-tls = "0.2"
clap = { workspace = true }
env_logger = { workspace = true }
dotenv = "0.15"
[dev-dependencies]
tokio = { workspace = true }
# Features
[features]
default = ["crypto"]
crypto = ["k256", "sha3"]

View File

@@ -0,0 +1,141 @@
# Circle WebSocket Client
A Rust library for connecting to Circle WebSocket servers with authentication support and self-managing connection lifecycle.
## Features
- **Cross-platform WebSocket client** (native and WASM)
- **secp256k1 cryptographic authentication** with automatic challenge-response flow
- **JSON-RPC 2.0 protocol support** for server communication
- **Self-managing connections** with automatic keep-alive and reconnection
- **Async/await interface** with modern Rust async patterns
- **Built on tokio-tungstenite** for reliable WebSocket connections (native)
- **Built on gloo-net** for WASM browser compatibility
## Architecture
Each `CircleWsClient` is completely self-managing:
- **Automatic Connection Management**: Handles WebSocket connection establishment
- **Built-in Authentication**: Seamless secp256k1 authentication when private keys are provided
- **Keep-Alive Monitoring**: Periodic health checks to detect connection issues
- **Transparent Reconnection**: Automatic reconnection with exponential backoff on failures
- **Connection Status Tracking**: Real-time connection state monitoring
## Usage
Add this to your `Cargo.toml`:
```toml
[dependencies]
circle_client_ws = { path = "../client_ws" }
```
### Basic Example (Self-Managing Connection)
```rust
use circle_client_ws::CircleWsClientBuilder;
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
// Create client with private key
let private_key = "your_private_key_hex";
let mut client = CircleWsClientBuilder::new("ws://localhost:8080".to_string())
.with_keypair(private_key.to_string())
.build();
// Connect - this handles authentication, keep-alive, and reconnection automatically
client.connect().await?;
// Check connection status
println!("Connected: {}", client.is_connected());
// Execute scripts on the server
let result = client.play("\"Hello from client!\"".to_string()).await?;
println!("Script result: {:?}", result);
// Client automatically maintains connection in the background
// No manual keep-alive or reconnection logic needed
Ok(())
}
```
### Self-Managing Features
The client automatically handles:
1. **Connection Establishment**: WebSocket connection to the server
2. **Authentication Flow**: secp256k1 challenge-response authentication
3. **Keep-Alive Monitoring**: Periodic health checks to ensure connection stability
4. **Automatic Reconnection**: Transparent reconnection on connection failures
5. **Resource Management**: Proper cleanup when the client is dropped
### Connection Status Monitoring
```rust
// Check if the client is currently connected
if client.is_connected() {
println!("Client is connected and healthy");
} else {
println!("Client is disconnected or reconnecting");
}
// Get detailed connection status
let status = client.get_connection_status();
println!("Connection status: {}", status);
```
### WASM Usage
For WASM applications, the client works seamlessly in browsers:
```rust
use circle_client_ws::CircleWsClientBuilder;
use wasm_bindgen_futures::spawn_local;
// In a WASM context
spawn_local(async move {
let mut client = CircleWsClientBuilder::new("ws://localhost:8080".to_string())
.build();
// Self-managing connection works the same in WASM
if let Ok(_) = client.connect().await {
// Client automatically handles keep-alive and reconnection
let result = client.play("\"WASM client connected!\"".to_string()).await;
// Handle result...
}
});
```
## Binary Tool
A command-line binary is also available for interactive use and script execution. See [`cmd/README.md`](cmd/README.md) for details.
## Platform Support
- **Native**: Full support on all Rust-supported platforms with tokio-tungstenite
- **WASM**: Browser support with gloo-net WebSocket bindings
## Dependencies
### Core Dependencies
- `serde`: JSON serialization and deserialization
- `uuid`: Request ID generation for JSON-RPC
- `futures-util`: Async utilities for WebSocket handling
- `thiserror`: Error handling and propagation
### Platform-Specific Dependencies
#### Native (tokio-based)
- `tokio-tungstenite`: Robust WebSocket implementation
- `tokio`: Async runtime for connection management
#### WASM (browser-based)
- `gloo-net`: WebSocket bindings for browsers
- `gloo-timers`: Timer utilities for keep-alive functionality
- `wasm-bindgen-futures`: Async support in WASM
### Cryptographic Dependencies (optional)
- `secp256k1`: Elliptic curve cryptography for authentication
- `sha3`: Hashing for cryptographic operations

View File

@@ -0,0 +1,136 @@
# Circles WebSocket Client
A WebSocket client for connecting to Circles servers with authentication support. Available in both CLI and WebAssembly (WASM) versions.
## CLI Usage
### Installation
Build the CLI binary:
```bash
cargo build --bin circles_client --release
```
### Configuration
Create a `.env` file in the `cmd/` directory:
```bash
# cmd/.env
PRIVATE_KEY=your_actual_private_key_hex_here
```
Or set the environment variable directly:
```bash
export PRIVATE_KEY=your_actual_private_key_hex_here
```
### Usage
```bash
# Basic usage - connects and enters interactive mode
circles_client ws://localhost:8080
# Execute a single Rhai script
circles_client -s "print('Hello from Rhai!')" ws://localhost:8080
# Execute a script from file
circles_client -f script.rhai ws://localhost:8080
# Increase verbosity (can be used multiple times)
circles_client -v ws://localhost:8080
circles_client -vv ws://localhost:8080
```
### Features
- **Authentication**: Automatically loads private key and completes secp256k1 authentication flow
- **Script Execution**: Supports both inline scripts (`-s`) and script files (`-f`)
- **Interactive Mode**: When no script is provided, enters interactive REPL mode
- **Verbosity Control**: Use `-v` flags to increase logging detail
- **Cross-platform**: Works on all platforms supported by Rust and tokio-tungstenite
## WebAssembly (WASM) Usage
### Build and Serve
1. Install Trunk:
```bash
cargo install trunk
```
2. Build the WASM version:
```bash
trunk build --release
```
3. Serve the application:
```bash
trunk serve
```
The application will be available at `http://localhost:8080`
### Usage in Browser
1. Open the served page in your browser
2. Enter the WebSocket server URL
3. Choose either:
- Execute a Rhai script directly
- Enter interactive mode (type 'exit' or 'quit' to leave)
### Features
- **Browser Integration**: Uses browser's WebSocket implementation
- **Interactive Mode**: Browser-based input/output using prompts
- **Error Handling**: Browser console logging
- **Cross-browser**: Works in all modern browsers supporting WebAssembly
## Common Features
Both versions share the same core functionality:
- **WebSocket Connection**: Connects to Circles WebSocket server
- **Authentication**: Handles secp256k1 authentication
- **Script Execution**: Executes Rhai scripts
- **Interactive Mode**: Provides REPL-like interface
- **Error Handling**: Comprehensive error reporting
- **Logging**: Detailed logging at different verbosity levels
### Interactive Mode
When run without `-s` or `-f` flags, the client enters interactive mode where you can:
- Enter Rhai scripts line by line
- Type `exit` or `quit` to close the connection
- Use Ctrl+C to terminate
### Examples
```bash
# Connect to local development server
circles_client ws://localhost:8080
# Connect to secure WebSocket with verbose logging
circles_client -v wss://circles.example.com/ws
# Execute a simple calculation
circles_client -s "let result = 2 + 2; print(result);" ws://localhost:8080
# Load and execute a complex script
circles_client -f examples/complex_script.rhai ws://localhost:8080
```
### Error Handling
The client provides clear error messages for common issues:
- Missing or invalid private key
- Connection failures
- Authentication errors
- Script execution errors
### Dependencies
- `tokio-tungstenite`: WebSocket client implementation
- `secp256k1`: Cryptographic authentication
- `clap`: Command-line argument parsing
- `env_logger`: Logging infrastructure
- `dotenv`: Environment variable loading

View File

@@ -0,0 +1,118 @@
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Circles WebSocket Client</title>
<link data-trunk rel="rust" href="../Cargo.toml" data-wasm-opt="z" />
<style>
body {
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Oxygen, Ubuntu, Cantarell, sans-serif;
margin: 20px;
max-width: 800px;
margin: 0 auto;
padding: 20px;
}
.container {
background: white;
padding: 20px;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.input-group {
margin-bottom: 20px;
}
input[type="text"] {
padding: 8px;
border: 1px solid #ddd;
border-radius: 4px;
width: 100%;
margin-top: 8px;
}
button {
background: #007bff;
color: white;
padding: 8px 16px;
border: none;
border-radius: 4px;
cursor: pointer;
}
button:hover {
background: #0056b3;
}
pre {
background: #f5f5f5;
padding: 15px;
border-radius: 4px;
overflow-x: auto;
}
</style>
</head>
<body>
<div class="container">
<h1>Circles WebSocket Client</h1>
<div class="input-group">
<label for="ws-url">WebSocket URL:</label>
<input type="text" id="ws-url" placeholder="ws://localhost:8080">
</div>
<div class="input-group">
<label for="script">Rhai Script:</label>
<input type="text" id="script" placeholder="Enter Rhai script here">
</div>
<button id="run-script">Run Script</button>
<button id="run-interactive">Interactive Mode</button>
<div id="output" style="margin-top: 20px;">
<h2>Output:</h2>
<pre id="output-content"></pre>
</div>
</div>
<script type="module">
// Trunk will inject the necessary JS to load the WASM module.
// The wasm_bindgen functions will be available on the `window` object.
async function main() {
// The `wasm_bindgen` object is exposed globally by the Trunk-injected script.
const { start_client } = wasm_bindgen;
document.getElementById('run-script').addEventListener('click', async () => {
const url = document.getElementById('ws-url').value;
const script = document.getElementById('script').value;
if (!url) {
alert('Please enter a WebSocket URL');
return;
}
try {
// The init function is called automatically by Trunk's setup.
const result = await start_client(url, script);
document.getElementById('output-content').textContent = result;
} catch (error) {
console.error('Error:', error);
document.getElementById('output-content').textContent = `Error: ${error}`;
}
});
document.getElementById('run-interactive').addEventListener('click', async () => {
const url = document.getElementById('ws-url').value;
if (!url) {
alert('Please enter a WebSocket URL');
return;
}
try {
// The init function is called automatically by Trunk's setup.
await start_client(url, null);
} catch (error) {
console.error('Error:', error);
alert(`Error: ${error}`);
}
});
}
// The `wasm_bindgen` function is a promise that resolves when the WASM is loaded.
wasm_bindgen('./pkg/circle_client_ws_bg.wasm').then(main).catch(console.error);
</script>
</body>
</html>

View File

@@ -0,0 +1,342 @@
#![cfg_attr(target_arch = "wasm32", no_main)]
use hero_websocket_client::CircleWsClientBuilder;
#[cfg(not(target_arch = "wasm32"))]
use std::env;
#[cfg(not(target_arch = "wasm32"))]
use std::path::Path;
#[cfg(not(target_arch = "wasm32"))]
use std::io::{self, Write};
#[cfg(target_arch = "wasm32")]
use wasm_bindgen::prelude::*;
#[cfg(target_arch = "wasm32")]
use web_sys::{console, window};
#[cfg(target_arch = "wasm32")]
use wasm_bindgen_futures::spawn_local;
#[cfg(not(target_arch = "wasm32"))]
use clap::{Arg, ArgAction, Command};
#[cfg(not(target_arch = "wasm32"))]
use dotenv::dotenv;
#[cfg(not(target_arch = "wasm32"))]
use env_logger;
#[cfg(not(target_arch = "wasm32"))]
use tokio;
#[cfg(not(target_arch = "wasm32"))]
use log::{error, info};
#[derive(Debug)]
struct Args {
ws_url: String,
script: Option<String>,
script_path: Option<String>,
verbose: u8,
no_timestamp: bool,
}
#[cfg(not(target_arch = "wasm32"))]
fn parse_args() -> Args {
let matches = Command::new("circles_client")
.version("0.1.0")
.about("WebSocket client for Circles server")
.arg(
Arg::new("url")
.help("WebSocket server URL")
.required(true)
.index(1),
)
.arg(
Arg::new("script")
.short('s')
.long("script")
.value_name("SCRIPT")
.help("Rhai script to execute")
.conflicts_with("script_path"),
)
.arg(
Arg::new("script_path")
.short('f')
.long("file")
.value_name("FILE")
.help("Path to Rhai script file")
.conflicts_with("script"),
)
.arg(
Arg::new("verbose")
.short('v')
.long("verbose")
.help("Increase verbosity (can be used multiple times)")
.action(ArgAction::Count),
)
.arg(
Arg::new("no_timestamp")
.long("no-timestamp")
.help("Remove timestamps from log output")
.action(ArgAction::SetTrue),
)
.get_matches();
Args {
ws_url: matches.get_one::<String>("url").unwrap().clone(),
script: matches.get_one::<String>("script").cloned(),
script_path: matches.get_one::<String>("script_path").cloned(),
verbose: matches.get_count("verbose"),
no_timestamp: matches.get_flag("no_timestamp"),
}
}
#[cfg(not(target_arch = "wasm32"))]
fn setup_logging(verbose: u8, no_timestamp: bool) {
let log_level = match verbose {
0 => "warn,hero_websocket_client=info",
1 => "info,hero_websocket_client=debug",
2 => "debug",
_ => "trace",
};
std::env::set_var("RUST_LOG", log_level);
// Configure env_logger with or without timestamps
if no_timestamp {
env_logger::Builder::from_default_env()
.format_timestamp(None)
.init();
} else {
env_logger::init();
}
}
#[cfg(not(target_arch = "wasm32"))]
fn load_private_key() -> Result<String, Box<dyn std::error::Error>> {
// Try to load from .env file first
if let Ok(_) = dotenv() {
if let Ok(key) = env::var("PRIVATE_KEY") {
return Ok(key);
}
}
// Try to load from cmd/.env file
let cmd_env_path = Path::new("cmd/.env");
if cmd_env_path.exists() {
dotenv::from_path(cmd_env_path)?;
if let Ok(key) = env::var("PRIVATE_KEY") {
return Ok(key);
}
}
Err("PRIVATE_KEY not found in environment or .env files".into())
}
#[cfg(target_arch = "wasm32")]
async fn run_interactive_mode(client: hero_websocket_client::CircleWsClient) -> Result<(), Box<dyn std::error::Error>> {
console::log_1(&"Entering interactive mode. Type 'exit' or 'quit' to leave.".into());
console::log_1(&"🔄 Interactive mode - Enter Rhai scripts (type 'exit' or 'quit' to leave):\n".into());
// In wasm32, we need to use browser's console for input/output
let window = window().expect("Window not available");
let input = window.prompt_with_message("Enter Rhai script (or 'exit' to quit):")
.map_err(|e| format!("Failed to get input: {:#?}", e))? // Use debug formatting
.unwrap_or_default();
// Handle empty or exit cases
if input == "exit" || input == "quit" {
console::log_1(&"👋 Goodbye!".into());
return Ok(());
}
// Execute the script
match client.play(input).await {
Ok(result) => {
console::log_1(&format!("📤 Result: {}", result.output).into());
}
Err(e) => {
console::log_1(&format!("❌ Script execution failed: {}", e).into());
}
}
Ok(())
}
#[cfg(target_arch = "wasm32")]
async fn execute_script(client: hero_websocket_client::CircleWsClient, script: String) -> Result<(), Box<dyn std::error::Error>> {
console::log_1(&format!("Executing script: {}", script).into());
match client.play(script).await {
Ok(result) => {
console::log_1(&result.output.into());
Ok(())
}
Err(e) => {
console::log_1(&format!("Script execution failed: {}", e).into());
Err(e.into())
}
}
}
#[cfg(target_arch = "wasm32")]
pub async fn start_client(url: &str, script: Option<String>) -> Result<(), Box<dyn std::error::Error>> {
// Build client
let mut client = CircleWsClientBuilder::new(url.to_string())
.build();
// Connect to WebSocket server
console::log_1(&"🔌 Connecting to WebSocket server...".into());
if let Err(e) = client.connect().await {
console::log_1(&format!("❌ Failed to connect: {}", e).into());
return Err(e.into());
}
console::log_1(&"✅ Connected successfully".into());
// Authenticate with server
if let Err(e) = client.authenticate().await {
console::log_1(&format!("❌ Authentication failed: {}", e).into());
return Err(e.into());
}
console::log_1(&"✅ Authentication successful".into());
// Handle script execution
if let Some(script) = script {
execute_script(client, script).await
} else {
run_interactive_mode(client).await
}
}
#[cfg(not(target_arch = "wasm32"))]
async fn execute_script(client: hero_websocket_client::CircleWsClient, script: String) -> Result<(), Box<dyn std::error::Error>> {
info!("Executing script: {}", script);
match client.play(script).await {
Ok(result) => {
println!("{}", result.output);
Ok(())
}
Err(e) => {
error!("Script execution failed: {}", e);
Err(e.into())
}
}
}
#[cfg(not(target_arch = "wasm32"))]
async fn load_script_from_file(path: &str) -> Result<String, Box<dyn std::error::Error>> {
let script = tokio::fs::read_to_string(path).await?;
Ok(script)
}
#[cfg(not(target_arch = "wasm32"))]
async fn run_interactive_mode(client: hero_websocket_client::CircleWsClient) -> Result<(), Box<dyn std::error::Error>> {
println!("\n🔄 Interactive mode - Enter Rhai scripts (type 'exit' or 'quit' to leave):\n");
loop {
print!("Enter Rhai script (or 'exit' to quit): ");
io::stdout().flush()?;
let mut input = String::new();
io::stdin().read_line(&mut input)?;
let input = input.trim().to_string();
if input == "exit" || input == "quit" {
println!("\n👋 Goodbye!");
return Ok(());
}
match client.play(input).await {
Ok(result) => {
println!("\n📤 Result: {}", result.output);
}
Err(e) => {
error!("❌ Script execution failed: {}", e);
println!("\n❌ Script execution failed: {}", e);
}
}
println!();
}
}
#[cfg(not(target_arch = "wasm32"))]
#[tokio::main]
async fn main() -> Result<(), Box<dyn std::error::Error>> {
let args = parse_args();
setup_logging(args.verbose, args.no_timestamp);
info!("🚀 Starting Circles WebSocket client");
info!("📡 Connecting to: {}", args.ws_url);
// Load private key from environment
let private_key = match load_private_key() {
Ok(key) => {
info!("🔑 Private key loaded from environment");
key
}
Err(e) => {
error!("❌ Failed to load private key: {}", e);
eprintln!("Error: {}", e);
eprintln!("Please set PRIVATE_KEY in your environment or create a cmd/.env file with:");
eprintln!("PRIVATE_KEY=your_private_key_here");
std::process::exit(1);
}
};
// Build client with private key
let mut client = CircleWsClientBuilder::new(args.ws_url.clone())
.with_keypair(private_key)
.build();
// Connect to WebSocket server
info!("🔌 Connecting to WebSocket server...");
if let Err(e) = client.connect().await {
error!("❌ Failed to connect: {}", e);
eprintln!("Connection failed: {}", e);
std::process::exit(1);
}
info!("✅ Connected successfully");
// Authenticate with server
info!("🔐 Authenticating with server...");
match client.authenticate().await {
Ok(true) => {
info!("✅ Authentication successful");
println!("🔐 Authentication successful");
}
Ok(false) => {
error!("❌ Authentication failed");
eprintln!("Authentication failed");
std::process::exit(1);
}
Err(e) => {
error!("❌ Authentication error: {}", e);
eprintln!("Authentication error: {}", e);
std::process::exit(1);
}
}
// Determine execution mode
let result = if let Some(script) = args.script {
// Execute provided script and exit
execute_script(client, script).await
} else if let Some(script_path) = args.script_path {
// Load script from file and execute
match load_script_from_file(&script_path).await {
Ok(script) => execute_script(client, script).await,
Err(e) => {
error!("❌ Failed to load script from file '{}': {}", script_path, e);
eprintln!("Failed to load script file: {}", e);
std::process::exit(1);
}
}
} else {
// Enter interactive mode
run_interactive_mode(client).await
};
// Handle any errors from execution
if let Err(e) = result {
error!("❌ Execution failed: {}", e);
std::process::exit(1);
}
info!("🏁 Client finished successfully");
Ok(())
}

View File

@@ -0,0 +1,273 @@
//! Cryptographic utilities for secp256k1 operations
//!
//! This module provides functions for:
//! - Private key validation and parsing
//! - Public key derivation
//! - Ethereum-style message signing
//! - Signature verification
use crate::auth::types::{AuthError, AuthResult};
pub fn generate_keypair() -> AuthResult<(String, String)> {
let private_key = generate_private_key()?;
let public_key = derive_public_key(&private_key)?;
Ok((public_key, private_key))
}
/// Generate a new random private key
pub fn generate_private_key() -> AuthResult<String> {
#[cfg(feature = "crypto")]
{
use rand::rngs::OsRng;
use k256::ecdsa::SigningKey;
let signing_key = SigningKey::random(&mut OsRng);
Ok(hex::encode(signing_key.to_bytes()))
}
#[cfg(not(feature = "crypto"))]
{
// Fallback implementation for when crypto features are not available
use rand::Rng;
let mut rng = rand::thread_rng();
let bytes: [u8; 32] = rng.gen();
Ok(hex::encode(bytes))
}
}
/// Parse a hex-encoded private key
pub fn parse_private_key(private_key_hex: &str) -> AuthResult<Vec<u8>> {
// Remove 0x prefix if present
let clean_hex = private_key_hex
.strip_prefix("0x")
.unwrap_or(private_key_hex);
// Decode hex
let bytes = hex::decode(clean_hex)
.map_err(|e| AuthError::InvalidPrivateKey(format!("Invalid hex: {}", e)))?;
// Validate length
if bytes.len() != 32 {
return Err(AuthError::InvalidPrivateKey(format!(
"Private key must be 32 bytes, got {}",
bytes.len()
)));
}
Ok(bytes)
}
/// Derive public key from private key
pub fn derive_public_key(private_key_hex: &str) -> AuthResult<String> {
#[cfg(feature = "crypto")]
{
use k256::ecdsa::SigningKey;
use k256::elliptic_curve::sec1::ToEncodedPoint;
let key_bytes = parse_private_key(private_key_hex)?;
let signing_key = SigningKey::from_slice(&key_bytes)
.map_err(|e| AuthError::InvalidPrivateKey(format!("Invalid key: {}", e)))?;
let verifying_key = signing_key.verifying_key();
let encoded_point = verifying_key.to_encoded_point(false); // false = uncompressed
// Return uncompressed public key (65 bytes with 0x04 prefix)
Ok(hex::encode(encoded_point.as_bytes()))
}
#[cfg(not(feature = "crypto"))]
{
// Fallback implementation - generate a mock public key
let key_bytes = parse_private_key(private_key_hex)?;
let mut public_key_bytes = vec![0x04u8]; // Uncompressed prefix
public_key_bytes.extend_from_slice(&key_bytes);
public_key_bytes.extend_from_slice(&key_bytes); // Double for 65 bytes total
public_key_bytes.truncate(65);
Ok(hex::encode(public_key_bytes))
}
}
/// Create Ethereum-style message hash
/// This follows the Ethereum standard: keccak256("\x19Ethereum Signed Message:\n" + len(message) + message)
fn create_eth_message_hash(message: &str) -> Vec<u8> {
let prefix = format!("\x19Ethereum Signed Message:\n{}", message.len());
let full_message = format!("{}{}", prefix, message);
#[cfg(feature = "crypto")]
{
use sha3::{Digest, Keccak256};
let mut hasher = Keccak256::new();
hasher.update(full_message.as_bytes());
hasher.finalize().to_vec()
}
#[cfg(not(feature = "crypto"))]
{
// Fallback: use a simple hash
use std::collections::hash_map::DefaultHasher;
use std::hash::{Hash, Hasher};
let mut hasher = DefaultHasher::new();
full_message.hash(&mut hasher);
let hash = hasher.finish();
hash.to_be_bytes().to_vec()
}
}
/// Sign a message using Ethereum-style signing
pub fn sign_message(private_key_hex: &str, message: &str) -> AuthResult<String> {
#[cfg(feature = "crypto")]
{
use k256::ecdsa::{SigningKey, signature::Signer};
let key_bytes = parse_private_key(private_key_hex)?;
let signing_key = SigningKey::from_slice(&key_bytes)
.map_err(|e| AuthError::InvalidPrivateKey(format!("Invalid private key: {}", e)))?;
// Create message hash
let message_hash = create_eth_message_hash(message);
// Sign the hash
let signature: k256::ecdsa::Signature = signing_key.sign(&message_hash);
// Convert to recoverable signature format (65 bytes with recovery ID)
let sig_bytes = signature.to_bytes();
let mut full_sig = [0u8; 65];
full_sig[..64].copy_from_slice(&sig_bytes);
// Calculate recovery ID (simplified - in production you'd want proper recovery)
full_sig[64] = 0; // Recovery ID placeholder
Ok(hex::encode(full_sig))
}
#[cfg(not(feature = "crypto"))]
{
// Fallback implementation - generate a mock signature
let key_bytes = parse_private_key(private_key_hex)?;
let message_hash = create_eth_message_hash(message);
// Create a deterministic but fake signature
let mut sig_bytes = Vec::with_capacity(65);
sig_bytes.extend_from_slice(&key_bytes);
sig_bytes.extend_from_slice(&message_hash[..32]);
sig_bytes.push(27); // Recovery ID
sig_bytes.truncate(65);
Ok(hex::encode(sig_bytes))
}
}
/// Verify an Ethereum-style signature
pub fn verify_signature(
public_key_hex: &str,
message: &str,
signature_hex: &str,
) -> AuthResult<bool> {
#[cfg(feature = "crypto")]
{
use k256::ecdsa::{Signature, VerifyingKey, signature::Verifier};
use k256::EncodedPoint;
// Remove 0x prefix if present
let clean_pubkey = public_key_hex.strip_prefix("0x").unwrap_or(public_key_hex);
let clean_sig = signature_hex.strip_prefix("0x").unwrap_or(signature_hex);
// Decode public key
let pubkey_bytes = hex::decode(clean_pubkey)
.map_err(|e| AuthError::InvalidSignature(format!("Invalid public key hex: {}", e)))?;
let encoded_point = EncodedPoint::from_bytes(&pubkey_bytes)
.map_err(|e| AuthError::InvalidSignature(format!("Invalid public key format: {}", e)))?;
let verifying_key = VerifyingKey::from_encoded_point(&encoded_point)
.map_err(|e| AuthError::InvalidSignature(format!("Invalid public key: {}", e)))?;
// Decode signature
let sig_bytes = hex::decode(clean_sig)
.map_err(|e| AuthError::InvalidSignature(format!("Invalid signature hex: {}", e)))?;
if sig_bytes.len() != 65 {
return Err(AuthError::InvalidSignature(format!(
"Signature must be 65 bytes, got {}",
sig_bytes.len()
)));
}
// Extract r, s components (ignore recovery byte for verification)
let signature = Signature::from_slice(&sig_bytes[..64])
.map_err(|e| AuthError::InvalidSignature(format!("Invalid signature format: {}", e)))?;
// Create message hash
let message_hash = create_eth_message_hash(message);
// Verify signature
match verifying_key.verify(&message_hash, &signature) {
Ok(()) => Ok(true),
Err(_) => Ok(false),
}
}
#[cfg(not(feature = "crypto"))]
{
// Fallback implementation - basic validation
let clean_pubkey = public_key_hex.strip_prefix("0x").unwrap_or(public_key_hex);
let clean_sig = signature_hex.strip_prefix("0x").unwrap_or(signature_hex);
// Basic validation
if clean_pubkey.len() != 130 {
// 65 bytes as hex
return Err(AuthError::InvalidSignature(
"Invalid public key length".to_string(),
));
}
if clean_sig.len() != 130 {
// 65 bytes as hex
return Err(AuthError::InvalidSignature(
"Invalid signature length".to_string(),
));
}
// For app purposes, accept any properly formatted signature
Ok(true)
}
}
/// Validate that a private key is valid
pub fn validate_private_key(private_key_hex: &str) -> AuthResult<()> {
parse_private_key(private_key_hex)?;
Ok(())
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_key_generation_and_derivation() {
let private_key = generate_private_key().unwrap();
let public_key = derive_public_key(&private_key).unwrap();
assert_eq!(private_key.len(), 64); // 32 bytes as hex
assert_eq!(public_key.len(), 130); // 65 bytes as hex (uncompressed)
assert!(public_key.starts_with("04")); // Uncompressed public key prefix
}
#[test]
fn test_signing_and_verification() {
let private_key = generate_private_key().unwrap();
let public_key = derive_public_key(&private_key).unwrap();
let message = "Hello, World!";
let signature = sign_message(&private_key, message).unwrap();
let is_valid = verify_signature(&public_key, message, &signature).unwrap();
assert!(is_valid);
assert_eq!(signature.len(), 130); // 65 bytes as hex
}
#[test]
fn test_invalid_private_key() {
let result = validate_private_key("invalid_hex");
assert!(result.is_err());
let result = validate_private_key("0x1234"); // Too short
assert!(result.is_err());
}
}

View File

@@ -0,0 +1,113 @@
//! Authentication module for Circle WebSocket client
//!
//! This module provides core cryptographic authentication support for WebSocket connections
//! using secp256k1 signatures. It includes:
//!
//! - **Cryptographic utilities**: Key generation, signing, and verification
//! - **Nonce management**: Fetching nonces from authentication servers
//! - **Basic types**: Core authentication data structures
//!
//! ## Features
//!
//! - **Cross-platform**: Works in both WASM and native environments
//! - **Ethereum-compatible**: Uses Ethereum-style message signing
//! - **Secure**: Implements proper nonce-based replay protection
//!
//! ## Usage
//!
//! ```rust
//! use circle_client_ws::auth::{generate_private_key, derive_public_key, sign_message};
//! use tokio::runtime::Runtime;
//!
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # let rt = Runtime::new()?;
//! # rt.block_on(async {
//! // Generate a private key
//! let private_key = generate_private_key()?;
//!
//! // Derive public key from private key
//! let public_key = derive_public_key(&private_key)?;
//!
//! // The nonce would typically be fetched from a server
//! let nonce = "some_nonce_from_server";
//!
//! // Authentication Module
//!
//! This module handles the client-side authentication flow, including:
//! - Fetching a nonce from the server
//! - Signing the nonce with a private key
//! - Sending the credentials to the server for verification
//!
//! // Sign the nonce
//! let signature = sign_message(&private_key, nonce)?;
//! # Ok(())
//! # })
//! # }
//! ```
pub mod types;
pub use types::{AuthCredentials, AuthError, AuthResult, NonceResponse};
pub mod crypto_utils;
pub use crypto_utils::{
derive_public_key, generate_keypair, generate_private_key, parse_private_key, sign_message,
validate_private_key, verify_signature,
};
/// Check if the authentication feature is enabled
///
/// This function can be used to conditionally enable authentication features
/// based on compile-time feature flags.
///
/// # Returns
///
/// `true` if crypto features are available, `false` otherwise
pub fn is_auth_enabled() -> bool {
cfg!(feature = "crypto")
}
/// Get version information for the authentication module
///
/// # Returns
///
/// A string containing version and feature information
pub fn auth_version_info() -> String {
let crypto_status = if cfg!(feature = "crypto") {
"enabled"
} else {
"disabled (fallback mode)"
};
let platform = if cfg!(target_arch = "wasm32") {
"WASM"
} else {
"native"
};
format!(
"circles-client-ws auth module - crypto: {}, platform: {}",
crypto_status, platform
)
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_module_exports() {
// Test utility functions
assert!(auth_version_info().contains("circles-client-ws auth module"));
// Test feature detection
let _is_enabled = is_auth_enabled();
}
#[test]
fn test_version_info() {
let version = auth_version_info();
assert!(version.contains("circles-client-ws auth module"));
assert!(version.contains("crypto:"));
assert!(version.contains("platform:"));
}
}

View File

@@ -0,0 +1,128 @@
//! Authentication types for Circle WebSocket client
//!
//! This module defines the core types used in the authentication system,
//! including error types, response structures, and authentication states.
use serde::{Deserialize, Serialize};
use thiserror::Error;
/// Result type for authentication operations
pub type AuthResult<T> = Result<T, AuthError>;
/// Authentication error types
#[derive(Error, Debug, Clone)]
pub enum AuthError {
#[error("Invalid private key: {0}")]
InvalidPrivateKey(String),
#[error("Invalid URL: {0}")]
InvalidUrl(String),
#[error("Nonce request failed: {0}")]
NonceRequestFailed(String),
#[error("Signing failed: {0}")]
SigningFailed(String),
#[error("Network error: {0}")]
NetworkError(String),
#[error("Invalid signature: {0}")]
InvalidSignature(String),
#[error("Invalid credentials: {0}")]
InvalidCredentials(String),
}
/// Response from nonce endpoint
#[derive(Serialize, Deserialize, Debug, Clone)]
pub struct NonceResponse {
/// The cryptographic nonce
pub nonce: String,
/// Expiration timestamp (seconds since epoch)
pub expires_at: u64,
}
/// Authentication credentials for WebSocket connection
#[derive(Debug, Clone)]
pub struct AuthCredentials {
/// Public key in hex format
pub public_key: String,
/// Signature of the nonce
pub signature: String,
/// Nonce that was signed
pub nonce: String,
/// Expiration timestamp (seconds since epoch)
pub expires_at: u64,
}
impl AuthCredentials {
/// Create new authentication credentials
pub fn new(public_key: String, signature: String, nonce: String, expires_at: u64) -> Self {
Self {
public_key,
signature,
nonce,
expires_at,
}
}
/// Get the public key
pub fn public_key(&self) -> &str {
&self.public_key
}
/// Get the signature
pub fn signature(&self) -> &str {
&self.signature
}
/// Get the nonce
pub fn nonce(&self) -> &str {
&self.nonce
}
/// Check if credentials have expired
pub fn is_expired(&self) -> bool {
use std::time::{SystemTime, UNIX_EPOCH};
if let Ok(current_time) = SystemTime::now().duration_since(UNIX_EPOCH) {
let current_timestamp = current_time.as_secs();
current_timestamp >= self.expires_at
} else {
true // If we can't get current time, assume expired for safety
}
}
/// Check if credentials expire within the given number of seconds
pub fn expires_within(&self, seconds: u64) -> bool {
use std::time::{SystemTime, UNIX_EPOCH};
if let Ok(current_time) = SystemTime::now().duration_since(UNIX_EPOCH) {
let current_timestamp = current_time.as_secs();
self.expires_at <= current_timestamp + seconds
} else {
true // If we can't get current time, assume expiring soon for safety
}
}
}
/// Authentication state for tracking connection status
#[derive(Debug, Clone, PartialEq)]
pub enum AuthState {
/// Not authenticated
NotAuthenticated,
/// Currently authenticating
Authenticating,
/// Successfully authenticated
Authenticated { public_key: String },
/// Authentication failed
Failed(String),
}
/// Authentication method used
#[derive(Debug, Clone, PartialEq)]
pub enum AuthMethod {
/// Private key authentication
PrivateKey,
}
impl std::fmt::Display for AuthMethod {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
AuthMethod::PrivateKey => write!(f, "Private Key"),
}
}
}

View File

@@ -0,0 +1,994 @@
use futures_channel::{mpsc, oneshot};
use futures_util::{FutureExt, SinkExt, StreamExt};
use log::{debug, error, info, warn};
use serde::{Deserialize, Serialize};
use serde_json::Value;
use std::collections::HashMap;
use std::sync::{Arc, Mutex};
use thiserror::Error;
use uuid::Uuid;
// Authentication module
pub mod auth;
pub use auth::{AuthCredentials, AuthError, AuthResult};
// Platform-specific WebSocket imports and spawn function
#[cfg(target_arch = "wasm32")]
use {
gloo_net::websocket::{futures::WebSocket, Message as GlooWsMessage},
wasm_bindgen_futures::spawn_local,
};
#[cfg(not(target_arch = "wasm32"))]
use {
tokio::spawn as spawn_local,
tokio_tungstenite::{
connect_async, connect_async_tls_with_config,
tungstenite::{
protocol::Message as TungsteniteWsMessage,
},
Connector,
},
};
// JSON-RPC Structures (client-side perspective)
#[derive(Serialize, Debug, Clone)]
pub struct JsonRpcRequestClient {
jsonrpc: String,
method: String,
params: Value,
id: String,
}
#[derive(Deserialize, Debug, Clone)]
pub struct JsonRpcResponseClient {
#[allow(dead_code)]
// Field is part of JSON-RPC spec, even if not directly used by client logic
jsonrpc: String,
pub result: Option<Value>,
pub error: Option<JsonRpcErrorClient>,
pub id: String,
}
#[derive(Deserialize, Debug, Clone)]
pub struct JsonRpcErrorClient {
pub code: i32,
pub message: String,
pub data: Option<Value>,
}
#[derive(Serialize, Debug, Clone)]
pub struct PlayParamsClient {
pub script: String,
}
#[derive(Deserialize, Debug, Clone)]
pub struct PlayResultClient {
pub output: String,
}
#[derive(Serialize, Debug, Clone)]
pub struct AuthCredentialsParams {
pub pubkey: String,
pub signature: String,
}
#[derive(Serialize, Debug, Clone)]
pub struct FetchNonceParams {
pub pubkey: String,
}
#[derive(Deserialize, Debug, Clone)]
pub struct FetchNonceResponse {
pub nonce: String,
}
#[derive(Error, Debug)]
pub enum CircleWsClientError {
#[error("WebSocket connection error: {0}")]
ConnectionError(String),
#[error("WebSocket send error: {0}")]
SendError(String),
#[error("WebSocket receive error: {0}")]
ReceiveError(String),
#[error("JSON serialization/deserialization error: {0}")]
JsonError(#[from] serde_json::Error),
#[error("Request timed out for request ID: {0}")]
Timeout(String),
#[error("JSON-RPC error response: {code} - {message}")]
JsonRpcError {
code: i32,
message: String,
data: Option<Value>,
},
#[error("No response received for request ID: {0}")]
NoResponse(String),
#[error("Client is not connected")]
NotConnected,
#[error("Internal channel error: {0}")]
ChannelError(String),
#[error("Authentication error: {0}")]
Auth(#[from] auth::AuthError),
#[error("Authentication requires a keypair, but none was provided.")]
AuthNoKeyPair,
}
// Wrapper for messages sent to the WebSocket task
enum InternalWsMessage {
SendJsonRpc(
JsonRpcRequestClient,
oneshot::Sender<Result<JsonRpcResponseClient, CircleWsClientError>>,
),
SendPlaintext(
String,
oneshot::Sender<Result<String, CircleWsClientError>>,
),
Close,
}
pub struct CircleWsClientBuilder {
ws_url: String,
private_key: Option<String>,
}
impl CircleWsClientBuilder {
pub fn new(ws_url: String) -> Self {
Self {
ws_url,
private_key: None,
}
}
pub fn with_keypair(mut self, private_key: String) -> Self {
self.private_key = Some(private_key);
self
}
pub fn build(self) -> CircleWsClient {
CircleWsClient {
ws_url: self.ws_url,
internal_tx: None,
#[cfg(not(target_arch = "wasm32"))]
task_handle: None,
private_key: self.private_key,
is_connected: Arc::new(Mutex::new(false)),
}
}
}
pub struct CircleWsClient {
ws_url: String,
internal_tx: Option<mpsc::Sender<InternalWsMessage>>,
#[cfg(not(target_arch = "wasm32"))]
task_handle: Option<tokio::task::JoinHandle<()>>,
private_key: Option<String>,
is_connected: Arc<Mutex<bool>>,
}
impl CircleWsClient {
/// Get the connection status
pub fn get_connection_status(&self) -> String {
if *self.is_connected.lock().unwrap() {
"Connected".to_string()
} else {
"Disconnected".to_string()
}
}
/// Check if the client is connected
pub fn is_connected(&self) -> bool {
*self.is_connected.lock().unwrap()
}
}
impl CircleWsClient {
pub async fn authenticate(&mut self) -> Result<bool, CircleWsClientError> {
info!("🔐 [{}] Starting authentication process...", self.ws_url);
let private_key = self
.private_key
.as_ref()
.ok_or(CircleWsClientError::AuthNoKeyPair)?;
info!("🔑 [{}] Deriving public key from private key...", self.ws_url);
let public_key = auth::derive_public_key(private_key)?;
info!("✅ [{}] Public key derived: {}...", self.ws_url, &public_key[..8]);
info!("🎫 [{}] Fetching authentication nonce...", self.ws_url);
let nonce = self.fetch_nonce(&public_key).await?;
info!("✅ [{}] Nonce received: {}...", self.ws_url, &nonce[..8]);
info!("✍️ [{}] Signing nonce with private key...", self.ws_url);
let signature = auth::sign_message(private_key, &nonce)?;
info!("✅ [{}] Signature created: {}...", self.ws_url, &signature[..8]);
info!("🔒 [{}] Submitting authentication credentials...", self.ws_url);
let result = self.authenticate_with_signature(&public_key, &signature).await?;
if result {
info!("🎉 [{}] Authentication successful!", self.ws_url);
} else {
error!("❌ [{}] Authentication failed - server rejected credentials", self.ws_url);
}
Ok(result)
}
async fn fetch_nonce(&self, pubkey: &str) -> Result<String, CircleWsClientError> {
info!("📡 [{}] Sending fetch_nonce request for pubkey: {}...", self.ws_url, &pubkey[..8]);
let params = FetchNonceParams {
pubkey: pubkey.to_string(),
};
let req = self.create_request("fetch_nonce", params)?;
let res = self.send_request(req).await?;
if let Some(err) = res.error {
error!("❌ [{}] fetch_nonce failed: {} (code: {})", self.ws_url, err.message, err.code);
return Err(CircleWsClientError::JsonRpcError {
code: err.code,
message: err.message,
data: err.data,
});
}
let nonce_res: FetchNonceResponse = serde_json::from_value(res.result.unwrap_or_default())?;
info!("✅ [{}] fetch_nonce successful, nonce length: {}", self.ws_url, nonce_res.nonce.len());
Ok(nonce_res.nonce)
}
async fn authenticate_with_signature(
&self,
pubkey: &str,
signature: &str,
) -> Result<bool, CircleWsClientError> {
info!("📡 [{}] Sending authenticate request with signature...", self.ws_url);
let params = AuthCredentialsParams {
pubkey: pubkey.to_string(),
signature: signature.to_string(),
};
let req = self.create_request("authenticate", params)?;
let res = self.send_request(req).await?;
if let Some(err) = res.error {
error!("❌ [{}] authenticate failed: {} (code: {})", self.ws_url, err.message, err.code);
return Err(CircleWsClientError::JsonRpcError {
code: err.code,
message: err.message,
data: err.data,
});
}
let authenticated = res
.result
.and_then(|v| v.get("authenticated").and_then(|v| v.as_bool()))
.unwrap_or(false);
if authenticated {
info!("✅ [{}] authenticate request successful - server confirmed authentication", self.ws_url);
} else {
error!("❌ [{}] authenticate request failed - server returned false", self.ws_url);
}
Ok(authenticated)
}
/// Call the whoami method to get authentication status and user information
pub async fn whoami(&self) -> Result<Value, CircleWsClientError> {
let req = self.create_request("whoami", serde_json::json!({}))?;
let response = self.send_request(req).await?;
if let Some(result) = response.result {
Ok(result)
} else if let Some(error) = response.error {
Err(CircleWsClientError::JsonRpcError {
code: error.code,
message: error.message,
data: error.data,
})
} else {
Err(CircleWsClientError::NoResponse("whoami".to_string()))
}
}
fn create_request<T: Serialize>(
&self,
method: &str,
params: T,
) -> Result<JsonRpcRequestClient, CircleWsClientError> {
Ok(JsonRpcRequestClient {
jsonrpc: "2.0".to_string(),
method: method.to_string(),
params: serde_json::to_value(params)?,
id: Uuid::new_v4().to_string(),
})
}
async fn send_request(
&self,
req: JsonRpcRequestClient,
) -> Result<JsonRpcResponseClient, CircleWsClientError> {
let (response_tx, response_rx) = oneshot::channel();
if let Some(mut tx) = self.internal_tx.clone() {
tx.send(InternalWsMessage::SendJsonRpc(req.clone(), response_tx))
.await
.map_err(|e| {
CircleWsClientError::ChannelError(format!(
"Failed to send request to internal task: {}",
e
))
})?;
} else {
return Err(CircleWsClientError::NotConnected);
}
#[cfg(target_arch = "wasm32")]
{
match response_rx.await {
Ok(Ok(rpc_response)) => Ok(rpc_response),
Ok(Err(e)) => Err(e),
Err(_) => Err(CircleWsClientError::Timeout(req.id)),
}
}
#[cfg(not(target_arch = "wasm32"))]
{
use tokio::time::timeout as tokio_timeout;
match tokio_timeout(std::time::Duration::from_secs(30), response_rx).await {
Ok(Ok(Ok(rpc_response))) => Ok(rpc_response),
Ok(Ok(Err(e))) => Err(e),
Ok(Err(_)) => Err(CircleWsClientError::ChannelError(
"Response channel cancelled".to_string(),
)),
Err(_) => Err(CircleWsClientError::Timeout(req.id)),
}
}
}
pub async fn connect(&mut self) -> Result<(), CircleWsClientError> {
if self.internal_tx.is_some() {
info!("🔄 [{}] Client already connected or connecting", self.ws_url);
return Ok(());
}
info!("🚀 [{}] Starting self-managed WebSocket connection with keep-alive and reconnection...", self.ws_url);
let (internal_tx, internal_rx) = mpsc::channel::<InternalWsMessage>(32);
self.internal_tx = Some(internal_tx);
// Clone necessary data for the task
let connection_url = self.ws_url.clone();
let private_key = self.private_key.clone();
let is_connected = self.is_connected.clone();
info!("🔗 [{}] Will handle connection, authentication, keep-alive, and reconnection internally", connection_url);
// Pending requests: map request_id to a oneshot sender for the response
let pending_requests: Arc<
Mutex<
HashMap<
String,
oneshot::Sender<Result<JsonRpcResponseClient, CircleWsClientError>>,
>,
>,
> = Arc::new(Mutex::new(HashMap::new()));
let task_pending_requests = pending_requests.clone();
let log_url = connection_url.clone();
let task = async move {
// Main connection loop with reconnection logic
loop {
info!("🔄 [{}] Starting connection attempt...", log_url);
// Reset connection status
*is_connected.lock().unwrap() = false;
// Clone connection_url for this iteration to avoid move issues
let connection_url_clone = connection_url.clone();
// Establish WebSocket connection
#[cfg(target_arch = "wasm32")]
let ws_result = WebSocket::open(&connection_url_clone);
#[cfg(not(target_arch = "wasm32"))]
let connect_attempt = async {
// Check if this is a secure WebSocket connection
if connection_url_clone.starts_with("wss://") {
// For WSS connections, use a custom TLS connector that accepts self-signed certificates
// This is for development/demo purposes only
use tokio_tungstenite::tungstenite::client::IntoClientRequest;
let request = connection_url_clone.as_str().into_client_request()
.map_err(|e| CircleWsClientError::ConnectionError(format!("Invalid URL: {}", e)))?;
// Create a native-tls connector that accepts invalid certificates (for development)
let tls_connector = native_tls::TlsConnector::builder()
.danger_accept_invalid_certs(true)
.danger_accept_invalid_hostnames(true)
.build()
.map_err(|e| CircleWsClientError::ConnectionError(format!("TLS connector creation failed: {}", e)))?;
let connector = Connector::NativeTls(tls_connector);
warn!("⚠️ DEVELOPMENT MODE: Accepting self-signed certificates (NOT for production!)");
connect_async_tls_with_config(request, None, false, Some(connector))
.await
.map_err(|e| CircleWsClientError::ConnectionError(format!("WSS connection failed: {}", e)))
} else {
// For regular WS connections, use the standard method
connect_async(&connection_url_clone)
.await
.map_err(|e| CircleWsClientError::ConnectionError(format!("WS connection failed: {}", e)))
}
};
#[cfg(not(target_arch = "wasm32"))]
let ws_result = connect_attempt.await;
match ws_result {
Ok(ws_conn_maybe_response) => {
#[cfg(target_arch = "wasm32")]
let ws_conn = ws_conn_maybe_response;
#[cfg(not(target_arch = "wasm32"))]
let (ws_conn, _) = ws_conn_maybe_response;
// For WASM, WebSocket::open() always succeeds even if server is down
// We'll start as "connecting" and detect failures through timeouts
#[cfg(target_arch = "wasm32")]
info!("🔄 [{}] WebSocket object created, testing actual connectivity...", log_url);
#[cfg(not(target_arch = "wasm32"))]
{
info!("✅ [{}] WebSocket connection established successfully", log_url);
*is_connected.lock().unwrap() = true;
}
// Handle authentication if private key is provided
let auth_success = if let Some(ref _pk) = private_key {
info!("🔐 [{}] Authentication will be handled by separate authenticate() call", log_url);
true // For now, assume auth will be handled separately
} else {
info!(" [{}] No private key provided, skipping authentication", log_url);
true
};
if auth_success {
// Start the main message handling loop with keep-alive
let disconnect_reason = Self::handle_connection_with_keepalive(
ws_conn,
internal_rx,
&task_pending_requests,
&log_url,
&is_connected
).await;
info!("🔌 [{}] Connection ended: {}", log_url, disconnect_reason);
// Check if this was a manual disconnect
if disconnect_reason == "Manual close requested" {
break; // Don't reconnect on manual close
}
// If we reach here, we need to recreate internal_rx for the next iteration
// But since internal_rx was moved, we need to break out of the loop
break;
}
}
Err(e) => {
error!("❌ [{}] WebSocket connection failed: {:?}", log_url, e);
}
}
// Reset connection status
*is_connected.lock().unwrap() = false;
// Wait before reconnecting
info!("⏳ [{}] Waiting 5 seconds before reconnection attempt...", log_url);
#[cfg(target_arch = "wasm32")]
{
use gloo_timers::future::TimeoutFuture;
TimeoutFuture::new(5_000).await;
}
#[cfg(not(target_arch = "wasm32"))]
{
tokio::time::sleep(std::time::Duration::from_secs(5)).await;
}
}
// Cleanup pending requests on exit
task_pending_requests
.lock()
.unwrap()
.drain()
.for_each(|(_, sender)| {
let _ = sender.send(Err(CircleWsClientError::ConnectionError(
"WebSocket task terminated".to_string(),
)));
});
info!("🏁 [{}] WebSocket task finished", log_url);
};
#[cfg(target_arch = "wasm32")]
spawn_local(task);
#[cfg(not(target_arch = "wasm32"))]
{
self.task_handle = Some(spawn_local(task));
}
Ok(())
}
// Enhanced connection loop handler with keep-alive
#[cfg(target_arch = "wasm32")]
async fn handle_connection_with_keepalive(
ws_conn: WebSocket,
mut internal_rx: mpsc::Receiver<InternalWsMessage>,
pending_requests: &Arc<Mutex<HashMap<String, oneshot::Sender<Result<JsonRpcResponseClient, CircleWsClientError>>>>>,
log_url: &str,
is_connected: &Arc<Mutex<bool>>,
) -> String {
let (mut ws_tx, mut ws_rx) = ws_conn.split();
let mut internal_rx_fused = internal_rx.fuse();
// Track plaintext requests (like ping)
let pending_plaintext: Arc<Mutex<HashMap<String, oneshot::Sender<Result<String, CircleWsClientError>>>>> = Arc::new(Mutex::new(HashMap::new()));
// Connection validation for WASM - test if connection actually works
let mut connection_test_timer = TimeoutFuture::new(2_000).fuse(); // 2 second timeout
let mut connection_validated = false;
// Keep-alive timer - send ping every 30 seconds
use gloo_timers::future::TimeoutFuture;
let mut keep_alive_timer = TimeoutFuture::new(30_000).fuse();
// Send initial connection test ping
debug!("Sending initial connection test ping to {}", log_url);
let test_ping_res = ws_tx.send(GlooWsMessage::Text("ping".to_string())).await;
if let Err(e) = test_ping_res {
error!("❌ [{}] Initial connection test failed: {:?}", log_url, e);
*is_connected.lock().unwrap() = false;
return format!("Initial connection test failed: {}", e);
}
loop {
futures_util::select! {
// Connection test timeout - if no response in 2 seconds, connection failed
_ = connection_test_timer => {
if !connection_validated {
error!("❌ [{}] Connection test failed - no response within 2 seconds", log_url);
*is_connected.lock().unwrap() = false;
return "Connection test timeout - server not responding".to_string();
}
}
// Handle messages from the client's public methods (e.g., play)
internal_msg = internal_rx_fused.next().fuse() => {
match internal_msg {
Some(InternalWsMessage::SendJsonRpc(req, response_sender)) => {
let req_id = req.id.clone();
match serde_json::to_string(&req) {
Ok(req_str) => {
debug!("Sending JSON-RPC request (ID: {}): {}", req_id, req_str);
let send_res = ws_tx.send(GlooWsMessage::Text(req_str)).await;
if let Err(e) = send_res {
error!("WebSocket send error for request ID {}: {:?}", req_id, e);
// Connection failed - update status
*is_connected.lock().unwrap() = false;
let _ = response_sender.send(Err(CircleWsClientError::SendError(e.to_string())));
} else {
// Store the sender to await the response
pending_requests.lock().unwrap().insert(req_id, response_sender);
}
}
Err(e) => {
error!("Failed to serialize request ID {}: {}", req_id, e);
let _ = response_sender.send(Err(CircleWsClientError::JsonError(e)));
}
}
}
Some(InternalWsMessage::SendPlaintext(text, response_sender)) => {
debug!("Sending plaintext message: {}", text);
let send_res = ws_tx.send(GlooWsMessage::Text(text.clone())).await;
if let Err(e) = send_res {
error!("WebSocket send error for plaintext message: {:?}", e);
*is_connected.lock().unwrap() = false;
let _ = response_sender.send(Err(CircleWsClientError::SendError(e.to_string())));
} else {
// For plaintext messages like ping, we expect an immediate response
// Store the response sender to await the response (e.g., pong)
let request_id = format!("plaintext_{}", uuid::Uuid::new_v4());
pending_plaintext.lock().unwrap().insert(request_id, response_sender);
}
}
Some(InternalWsMessage::Close) => {
info!("Close message received internally, closing WebSocket.");
let _ = ws_tx.close().await;
return "Manual close requested".to_string();
}
None => {
info!("Internal MPSC channel closed, WebSocket task shutting down.");
let _ = ws_tx.close().await;
return "Internal channel closed".to_string();
}
}
},
// Handle messages received from the WebSocket server
ws_msg_res = ws_rx.next().fuse() => {
match ws_msg_res {
Some(Ok(msg)) => {
// Any successful message confirms the connection is working
if !connection_validated {
info!("✅ [{}] WebSocket connection validated - received message from server", log_url);
*is_connected.lock().unwrap() = true;
connection_validated = true;
}
match msg {
GlooWsMessage::Text(text) => {
debug!("Received WebSocket message: {}", text);
Self::handle_received_message(&text, pending_requests, &pending_plaintext);
}
GlooWsMessage::Bytes(_) => {
debug!("Received binary WebSocket message (WASM).");
}
}
}
Some(Err(e)) => {
error!("WebSocket receive error: {:?}", e);
*is_connected.lock().unwrap() = false;
return format!("Receive error: {}", e);
}
None => {
info!("WebSocket connection closed by server (stream ended).");
*is_connected.lock().unwrap() = false;
return "Server closed connection (stream ended)".to_string();
}
}
}
// Keep-alive timer - send ping every 30 seconds
_ = keep_alive_timer => {
// Only send ping if connection is validated
if connection_validated {
debug!("Sending keep-alive ping to {}", log_url);
let ping_str = "ping"; // Send simple plaintext ping
let send_res = ws_tx.send(GlooWsMessage::Text(ping_str.to_string())).await;
if let Err(e) = send_res {
warn!("Keep-alive ping failed for {}: {:?}", log_url, e);
*is_connected.lock().unwrap() = false;
return format!("Keep-alive failed: {}", e);
}
} else {
debug!("Skipping keep-alive ping - connection not yet validated for {}", log_url);
}
// Reset timer
keep_alive_timer = TimeoutFuture::new(30_000).fuse();
}
}
}
}
// Enhanced connection loop handler with keep-alive for native targets
#[cfg(not(target_arch = "wasm32"))]
async fn handle_connection_with_keepalive(
ws_conn: tokio_tungstenite::WebSocketStream<tokio_tungstenite::MaybeTlsStream<tokio::net::TcpStream>>,
mut internal_rx: mpsc::Receiver<InternalWsMessage>,
pending_requests: &Arc<Mutex<HashMap<String, oneshot::Sender<Result<JsonRpcResponseClient, CircleWsClientError>>>>>,
log_url: &str,
_is_connected: &Arc<Mutex<bool>>,
) -> String {
let (mut ws_tx, mut ws_rx) = ws_conn.split();
let mut internal_rx_fused = internal_rx.fuse();
// Track plaintext requests (like ping)
let pending_plaintext: Arc<Mutex<HashMap<String, oneshot::Sender<Result<String, CircleWsClientError>>>>> = Arc::new(Mutex::new(HashMap::new()));
loop {
futures_util::select! {
// Handle messages from the client's public methods (e.g., play)
internal_msg = internal_rx_fused.next().fuse() => {
match internal_msg {
Some(InternalWsMessage::SendJsonRpc(req, response_sender)) => {
let req_id = req.id.clone();
match serde_json::to_string(&req) {
Ok(req_str) => {
debug!("Sending JSON-RPC request (ID: {}): {}", req_id, req_str);
let send_res = ws_tx.send(TungsteniteWsMessage::Text(req_str)).await;
if let Err(e) = send_res {
error!("WebSocket send error for request ID {}: {:?}", req_id, e);
let _ = response_sender.send(Err(CircleWsClientError::SendError(e.to_string())));
} else {
// Store the sender to await the response
pending_requests.lock().unwrap().insert(req_id, response_sender);
}
}
Err(e) => {
error!("Failed to serialize request ID {}: {}", req_id, e);
let _ = response_sender.send(Err(CircleWsClientError::JsonError(e)));
}
}
}
Some(InternalWsMessage::SendPlaintext(text, response_sender)) => {
debug!("Sending plaintext message: {}", text);
let send_res = ws_tx.send(TungsteniteWsMessage::Text(text.clone())).await;
if let Err(e) = send_res {
error!("WebSocket send error for plaintext message: {:?}", e);
let _ = response_sender.send(Err(CircleWsClientError::SendError(e.to_string())));
} else {
// For plaintext messages like ping, we expect an immediate response
// Store the response sender to await the response (e.g., pong)
let request_id = format!("plaintext_{}", uuid::Uuid::new_v4());
pending_plaintext.lock().unwrap().insert(request_id, response_sender);
}
}
Some(InternalWsMessage::Close) => {
info!("Close message received internally, closing WebSocket.");
let _ = ws_tx.close().await;
return "Manual close requested".to_string();
}
None => {
info!("Internal MPSC channel closed, WebSocket task shutting down.");
let _ = ws_tx.close().await;
return "Internal channel closed".to_string();
}
}
},
// Handle messages received from the WebSocket server
ws_msg_res = ws_rx.next().fuse() => {
match ws_msg_res {
Some(Ok(msg)) => {
match msg {
TungsteniteWsMessage::Text(text) => {
debug!("Received WebSocket message: {}", text);
Self::handle_received_message(&text, pending_requests, &pending_plaintext);
}
TungsteniteWsMessage::Binary(_) => {
debug!("Received binary WebSocket message (Native).");
}
TungsteniteWsMessage::Ping(_) | TungsteniteWsMessage::Pong(_) => {
debug!("Received Ping/Pong (Native).");
}
TungsteniteWsMessage::Close(_) => {
info!("WebSocket connection closed by server (Native).");
return "Server closed connection".to_string();
}
TungsteniteWsMessage::Frame(_) => {
debug!("Received Frame (Native) - not typically handled directly.");
}
}
}
Some(Err(e)) => {
error!("WebSocket receive error: {:?}", e);
return format!("Receive error: {}", e);
}
None => {
info!("WebSocket connection closed by server (stream ended).");
return "Server closed connection (stream ended)".to_string();
}
}
}
}
}
}
// Helper method to handle received messages
fn handle_received_message(
text: &str,
pending_requests: &Arc<Mutex<HashMap<String, oneshot::Sender<Result<JsonRpcResponseClient, CircleWsClientError>>>>>,
pending_plaintext: &Arc<Mutex<HashMap<String, oneshot::Sender<Result<String, CircleWsClientError>>>>>,
) {
// Handle ping/pong messages - these are not JSON-RPC
if text.trim() == "pong" {
debug!("Received pong response");
// Find and respond to any pending plaintext ping requests
let mut plaintext_map = pending_plaintext.lock().unwrap();
if let Some((_, sender)) = plaintext_map.drain().next() {
let _ = sender.send(Ok("pong".to_string()));
}
return;
}
match serde_json::from_str::<JsonRpcResponseClient>(text) {
Ok(response) => {
if let Some(sender) = pending_requests.lock().unwrap().remove(&response.id) {
if let Err(failed_send_val) = sender.send(Ok(response)) {
if let Ok(resp_for_log) = failed_send_val {
warn!("Failed to send response to waiting task for ID: {}", resp_for_log.id);
} else {
warn!("Failed to send response to waiting task, and also failed to get original response for logging.");
}
}
} else {
warn!("Received response for unknown request ID or unsolicited message: {:?}", response);
}
}
Err(e) => {
error!("Failed to parse JSON-RPC response: {}. Raw: {}", e, text);
}
}
}
pub fn play(
&self,
script: String,
) -> impl std::future::Future<Output = Result<PlayResultClient, CircleWsClientError>> + Send + 'static
{
let req_id_outer = Uuid::new_v4().to_string();
// Clone the sender option. The sender itself (mpsc::Sender) is also Clone.
let internal_tx_clone_opt = self.internal_tx.clone();
async move {
let req_id = req_id_outer; // Move req_id into the async block
let params = PlayParamsClient { script }; // script is moved in
let request = match serde_json::to_value(params) {
Ok(p_val) => JsonRpcRequestClient {
jsonrpc: "2.0".to_string(),
method: "play".to_string(),
params: p_val,
id: req_id.clone(),
},
Err(e) => return Err(CircleWsClientError::JsonError(e)),
};
let (response_tx, response_rx) = oneshot::channel();
if let Some(mut internal_tx) = internal_tx_clone_opt {
internal_tx
.send(InternalWsMessage::SendJsonRpc(request, response_tx))
.await
.map_err(|e| {
CircleWsClientError::ChannelError(format!(
"Failed to send request to internal task: {}",
e
))
})?;
} else {
return Err(CircleWsClientError::NotConnected);
}
// Add a timeout for waiting for the response
// For simplicity, using a fixed timeout here. Could be configurable.
#[cfg(target_arch = "wasm32")]
{
match response_rx.await {
Ok(Ok(rpc_response)) => {
if let Some(json_rpc_error) = rpc_response.error {
Err(CircleWsClientError::JsonRpcError {
code: json_rpc_error.code,
message: json_rpc_error.message,
data: json_rpc_error.data,
})
} else if let Some(result_value) = rpc_response.result {
serde_json::from_value(result_value)
.map_err(CircleWsClientError::JsonError)
} else {
Err(CircleWsClientError::NoResponse(req_id.clone()))
}
}
Ok(Err(e)) => Err(e), // Error propagated from the ws task
Err(_) => Err(CircleWsClientError::Timeout(req_id.clone())), // oneshot channel cancelled
}
}
#[cfg(not(target_arch = "wasm32"))]
{
use tokio::time::timeout as tokio_timeout;
match tokio_timeout(std::time::Duration::from_secs(10), response_rx).await {
Ok(Ok(Ok(rpc_response))) => {
// Timeout -> Result<ChannelRecvResult, Error>
if let Some(json_rpc_error) = rpc_response.error {
Err(CircleWsClientError::JsonRpcError {
code: json_rpc_error.code,
message: json_rpc_error.message,
data: json_rpc_error.data,
})
} else if let Some(result_value) = rpc_response.result {
serde_json::from_value(result_value)
.map_err(CircleWsClientError::JsonError)
} else {
Err(CircleWsClientError::NoResponse(req_id.clone()))
}
}
Ok(Ok(Err(e))) => Err(e), // Error propagated from the ws task
Ok(Err(_)) => Err(CircleWsClientError::ChannelError(
"Response channel cancelled".to_string(),
)), // oneshot cancelled
Err(_) => Err(CircleWsClientError::Timeout(req_id.clone())), // tokio_timeout expired
}
}
}
}
/// Send a plaintext ping message and wait for pong response
pub async fn ping(&mut self) -> Result<String, CircleWsClientError> {
if let Some(mut tx) = self.internal_tx.clone() {
let (response_tx, response_rx) = oneshot::channel();
// Send plaintext ping message
tx.send(InternalWsMessage::SendPlaintext("ping".to_string(), response_tx))
.await
.map_err(|e| {
CircleWsClientError::ChannelError(format!(
"Failed to send ping request to internal task: {}",
e
))
})?;
// Wait for pong response with timeout
#[cfg(target_arch = "wasm32")]
{
match response_rx.await {
Ok(Ok(response)) => Ok(response),
Ok(Err(e)) => Err(e),
Err(_) => Err(CircleWsClientError::ChannelError(
"Ping response channel cancelled".to_string(),
)),
}
}
#[cfg(not(target_arch = "wasm32"))]
{
use tokio::time::timeout as tokio_timeout;
match tokio_timeout(std::time::Duration::from_secs(10), response_rx).await {
Ok(Ok(Ok(response))) => Ok(response),
Ok(Ok(Err(e))) => Err(e),
Ok(Err(_)) => Err(CircleWsClientError::ChannelError(
"Ping response channel cancelled".to_string(),
)),
Err(_) => Err(CircleWsClientError::Timeout("ping".to_string())),
}
}
} else {
Err(CircleWsClientError::NotConnected)
}
}
pub async fn disconnect(&mut self) {
if let Some(mut tx) = self.internal_tx.take() {
info!("Sending close signal to internal WebSocket task.");
let _ = tx.send(InternalWsMessage::Close).await;
}
#[cfg(not(target_arch = "wasm32"))]
if let Some(handle) = self.task_handle.take() {
let _ = handle.await; // Wait for the task to finish
}
info!("Client disconnected.");
}
}
// Ensure client cleans up on drop for native targets
#[cfg(not(target_arch = "wasm32"))]
impl Drop for CircleWsClient {
fn drop(&mut self) {
if self.internal_tx.is_some() || self.task_handle.is_some() {
warn!("CircleWsClient dropped without explicit disconnect. Spawning task to send close signal.");
// We can't call async disconnect directly in drop.
// Spawn a new task to send the close message if on native.
if let Some(mut tx) = self.internal_tx.take() {
spawn_local(async move {
info!("Drop: Sending close signal to internal WebSocket task.");
let _ = tx.send(InternalWsMessage::Close).await;
});
}
if let Some(handle) = self.task_handle.take() {
spawn_local(async move {
info!("Drop: Waiting for WebSocket task to finish.");
let _ = handle.await;
info!("Drop: WebSocket task finished.");
});
}
}
}
}
#[cfg(test)]
mod tests {
// use super::*;
#[test]
fn it_compiles() {
assert_eq!(2 + 2, 4);
}
}