Files
herolib/lib/clients/jina/jina_client_test.v
Mahmoud Emad ad300c068f feat: Enhance Jina client with improved classification API
- Update `jina.vsh` example to showcase the new classification API
  with support for both text and image inputs. This improves
  the flexibility and usability of the client.
- Introduce new structs `TextDoc`, `ImageDoc`, `ClassificationInput`,
  `ClassificationOutput`, `ClassificationResult`, and `LabelScore`
  to represent data structures for classification requests and
  responses. This enhances code clarity and maintainability.
- Implement the `classify` function in `jina_client.v` to handle
  classification requests with support for text and image inputs,
  model selection, and label specification. This adds a crucial
  feature to the Jina client.
- Add comprehensive unit tests in `jina_client_test.v` to cover
  the new `classify` function's functionality. This ensures the
  correctness and robustness of the implemented feature.
- Remove redundant code related to old classification API and data
  structures from `model_embed.v`, `model_rank.v`, and
  `jina_client.v`. This streamlines the codebase and removes
  obsolete elements.
2025-03-11 21:11:04 +02:00

81 lines
2.0 KiB
V

module jina
import time
fn setup_client() !&Jina {
mut client := get()!
return client
}
fn test_create_embeddings() {
time.sleep(1 * time.second)
mut client := setup_client()!
embeddings := client.create_embeddings(
input: ['Hello', 'World']
model: .jina_embeddings_v3
task: 'separation'
) or { panic('Error while creating embeddings: ${err}') }
assert embeddings.data.len > 0
assert embeddings.object == 'list' // Check the object type
assert embeddings.model == 'jina-embeddings-v3'
}
fn test_rerank() {
time.sleep(1 * time.second)
mut client := setup_client()!
rerank_result := client.rerank(
model: .reranker_v2_base_multilingual
query: 'skincare products'
documents: ['Product A', 'Product B', 'Product C']
top_n: 2
) or { panic('Error while reranking: ${err}') }
assert rerank_result.results.len == 2
assert rerank_result.model == 'jina-reranker-v2-base-multilingual'
}
fn test_train() {
time.sleep(1 * time.second)
mut client := setup_client()!
train_result := client.train(
model: .jina_clip_v1
input: [
TrainingExample{
text: 'A photo of a cat'
label: 'cat'
},
TrainingExample{
text: 'A photo of a dog'
label: 'dog'
},
]
) or { panic('Error while training: ${err}') }
assert train_result.classifier_id.len > 0
assert train_result.num_samples == 2
}
fn test_classify() {
time.sleep(1 * time.second)
mut client := setup_client()!
classify_result := client.classify(
model: .jina_clip_v1
input: [
ClassificationInput{
text: 'A photo of a cat'
},
ClassificationInput{
image: 'https://letsenhance.io/static/73136da51c245e80edc6ccfe44888a99/1015f/MainBefore.jpg'
},
]
labels: ['cat', 'dog']
) or { panic('Error while classifying: ${err}') }
assert classify_result.data.len == 2
assert classify_result.data[0].prediction in ['cat', 'dog']
assert classify_result.data[1].prediction in ['cat', 'dog']
assert classify_result.data[0].object == 'classification'
assert classify_result.data[1].object == 'classification'
}