- Update `jina.vsh` example to showcase the new classification API with support for both text and image inputs. This improves the flexibility and usability of the client. - Introduce new structs `TextDoc`, `ImageDoc`, `ClassificationInput`, `ClassificationOutput`, `ClassificationResult`, and `LabelScore` to represent data structures for classification requests and responses. This enhances code clarity and maintainability. - Implement the `classify` function in `jina_client.v` to handle classification requests with support for text and image inputs, model selection, and label specification. This adds a crucial feature to the Jina client. - Add comprehensive unit tests in `jina_client_test.v` to cover the new `classify` function's functionality. This ensures the correctness and robustness of the implemented feature. - Remove redundant code related to old classification API and data structures from `model_embed.v`, `model_rank.v`, and `jina_client.v`. This streamlines the codebase and removes obsolete elements.
58 lines
1.4 KiB
GLSL
Executable File
58 lines
1.4 KiB
GLSL
Executable File
#!/usr/bin/env -S v -n -w -gc none -cc tcc -d use_openssl -enable-globals run
|
|
|
|
import freeflowuniverse.herolib.clients.jina
|
|
|
|
mut jina_client := jina.get()!
|
|
|
|
// Create embeddings
|
|
embeddings := jina_client.create_embeddings(
|
|
input: ['Hello', 'World']
|
|
model: .jina_embeddings_v3
|
|
task: 'separation'
|
|
) or { panic('Error while creating embeddings: ${err}') }
|
|
|
|
println('Created embeddings: ${embeddings}')
|
|
|
|
// Rerank
|
|
rerank_result := jina_client.rerank(
|
|
model: .reranker_v2_base_multilingual
|
|
query: 'skincare products'
|
|
documents: ['Product A', 'Product B', 'Product C']
|
|
top_n: 2
|
|
) or { panic('Error while reranking: ${err}') }
|
|
|
|
println('Rerank result: ${rerank_result}')
|
|
|
|
// Train
|
|
train_result := jina_client.train(
|
|
model: .jina_clip_v1
|
|
input: [
|
|
jina.TrainingExample{
|
|
text: 'Sample text'
|
|
label: 'positive'
|
|
},
|
|
jina.TrainingExample{
|
|
image: 'https://letsenhance.io/static/73136da51c245e80edc6ccfe44888a99/1015f/MainBefore.jpg'
|
|
label: 'negative'
|
|
},
|
|
]
|
|
) or { panic('Error while training: ${err}') }
|
|
|
|
println('Train result: ${train_result}')
|
|
|
|
// Classify
|
|
classify_result := jina_client.classify(
|
|
model: .jina_clip_v1
|
|
input: [
|
|
jina.ClassificationInput{
|
|
text: 'A photo of a cat'
|
|
},
|
|
jina.ClassificationInput{
|
|
image: 'https://letsenhance.io/static/73136da51c245e80edc6ccfe44888a99/1015f/MainBefore.jpg'
|
|
},
|
|
]
|
|
labels: ['cat', 'dog']
|
|
) or { panic('Error while classifying: ${err}') }
|
|
|
|
println('Classification result: ${classify_result}')
|