Merge branch 'development_action007_mahmoud' into development_actions007

This commit is contained in:
2025-03-13 07:15:40 +01:00
6 changed files with 270 additions and 210 deletions

View File

@@ -3,6 +3,8 @@
import freeflowuniverse.herolib.clients.jina
mut jina_client := jina.get()!
health := jina_client.health()!
println('Server health: ${health}')
// Create embeddings
embeddings := jina_client.create_embeddings(
@@ -56,5 +58,29 @@ classify_result := jina_client.classify(
println('Classification result: ${classify_result}')
// List classifiers
classifiers := jina_client.list_classifiers() or { panic('Error fetching classifiers: ${err}') }
println('Classifiers: ${classifiers}')
// Delete classifier
delete_result := jina_client.delete_classifier(classifier_id: classifiers[0].classifier_id) or {
panic('Error deleting classifier: ${err}')
}
println('Delete result: ${delete_result}')
// Create multi vector
multi_vector := jina_client.create_multi_vector(
input: [
jina.MultiVectorTextDoc{
text: 'Hello world'
input_type: .document
},
jina.MultiVectorTextDoc{
text: "What's up?"
input_type: .query
},
]
embedding_type: ['float']
// dimensions: 96
)!
println('Multi vector: ${multi_vector}')

View File

@@ -85,3 +85,18 @@ fn test_get_classifiers() {
classifiers := client.list_classifiers() or { panic('Error fetching classifiers: ${err}') }
assert classifiers.len != 0
}
// Delete classifier
fn test_delete_classifiers() {
time.sleep(1 * time.second)
mut client := setup_client()!
classifiers := client.list_classifiers() or { panic('Error fetching classifiers: ${err}') }
assert classifiers.len != 0
delete_result := client.delete_classifier(classifier_id: classifiers[0].classifier_id) or {
panic('Error deleting classifier: ${err}')
}
assert delete_result == '{"message":"Classifier ${classifiers[0].classifier_id} deleted"}'
}

View File

@@ -285,7 +285,25 @@ pub fn (mut j Jina) list_classifiers() ![]Classifier {
mut httpclient := j.httpclient()!
response := httpclient.get(req)!
println('response: ${response}')
classifiers := json.decode([]Classifier, response)!
return classifiers
}
// ClassifyParams represents parameters for the classification request
@[params]
pub struct DeleteClassifierParams {
pub mut:
classifier_id string @[required] // The ID of the classifier to delete
}
// Function to delete a classifier by its ID
pub fn (mut j Jina) delete_classifier(params DeleteClassifierParams) !string {
req := httpconnection.Request{
method: .delete
prefix: 'v1/classifiers/${params.classifier_id}'
}
mut httpclient := j.httpclient()!
response := httpclient.delete(req)!
return response
}

View File

@@ -1,5 +1,6 @@
module jina
import freeflowuniverse.herolib.core.httpconnection
import json
// JinaModel represents the available Jina models
@@ -43,6 +44,32 @@ pub fn jina_model_from_string(s string) !JinaModel {
}
}
// TruncateType represents the available truncation options
pub enum TruncateType {
none_ // "NONE"
start // "START"
end // "END"
}
// to_string converts TruncateType enum to its string representation
pub fn (t TruncateType) to_string() string {
return match t {
.none_ { 'NONE' }
.start { 'START' }
.end { 'END' }
}
}
// from_string converts string to TruncateType enum
pub fn truncate_type_from_string(s string) !TruncateType {
return match s {
'NONE' { TruncateType.none_ }
'START' { TruncateType.start }
'END' { TruncateType.end }
else { error('Invalid truncate type string: ${s}') }
}
}
// EmbeddingType represents the available embedding types
pub enum EmbeddingType {
float // "float"
@@ -81,17 +108,6 @@ pub enum TaskType {
separation // "separation"
}
// to_string converts TaskType enum to its string representation
pub fn (t TaskType) to_string() string {
return match t {
.retrieval_query { 'retrieval.query' }
.retrieval_passage { 'retrieval.passage' }
.text_matching { 'text-matching' }
.classification { 'classification' }
.separation { 'separation' }
}
}
// from_string converts string to TaskType enum
pub fn task_type_from_string(s string) !TaskType {
return match s {
@@ -104,41 +120,22 @@ pub fn task_type_from_string(s string) !TaskType {
}
}
// TruncateType represents the available truncation options
pub enum TruncateType {
none_ // "NONE"
start // "START"
end // "END"
}
// to_string converts TruncateType enum to its string representation
pub fn (t TruncateType) to_string() string {
// to_string converts TaskType enum to its string representation
pub fn (t TaskType) to_string() string {
return match t {
.none_ { 'NONE' }
.start { 'START' }
.end { 'END' }
.retrieval_query { 'retrieval.query' }
.retrieval_passage { 'retrieval.passage' }
.text_matching { 'text-matching' }
.classification { 'classification' }
.separation { 'separation' }
}
}
// from_string converts string to TruncateType enum
pub fn truncate_type_from_string(s string) !TruncateType {
return match s {
'NONE' { TruncateType.none_ }
'START' { TruncateType.start }
'END' { TruncateType.end }
else { error('Invalid truncate type string: ${s}') }
}
}
// TextEmbeddingInputRaw represents the raw input for text embedding requests as sent to the server
struct TextEmbeddingInputRaw {
mut:
model string = 'jina-embeddings-v2-base-en'
input []string @[required]
task string // Optional: task type as string
type_ string @[json: 'type'] // Optional: embedding type as string
truncate string // Optional: "NONE", "START", "END"
late_chunking bool // Optional: Flag to determine if late chunking is applied
// Usage represents token usage information
pub struct Usage {
pub mut:
total_tokens int
unit string
}
// TextEmbeddingInput represents the input for text embedding requests with enum types
@@ -152,61 +149,14 @@ pub mut:
late_chunking ?bool // Flag to determine if late chunking is applied
}
// dumps converts TextEmbeddingInput to JSON string
pub fn (t TextEmbeddingInput) dumps() !string {
mut raw := TextEmbeddingInputRaw{
model: t.model
input: t.input
late_chunking: if v := t.late_chunking { true } else { false }
}
raw.task = t.task.to_string()
if v := t.type_ {
raw.type_ = v.to_string()
}
if v := t.truncate {
raw.truncate = v.to_string()
}
return json.encode(raw)
// EmbeddingData represents a single embedding result
pub struct EmbeddingData {
pub mut:
embedding []f64
index int
object string
}
// from_raw converts TextEmbeddingInputRaw to TextEmbeddingInput
// pub fn loads_text_embedding_input(text string) !TextEmbeddingInput {
// // TODO: go from text to InputObject over json
// // mut input := TextEmbeddingInput{
// // model: jina_model_from_string(raw.model)?
// // input: raw.input
// // late_chunking: raw.late_chunking
// // }
// // if raw.task != '' {
// // input.task = task_type_from_string(raw.task)!
// // }
// // if raw.type_ != '' {
// // input.type_ = embedding_type_from_string(raw.type_)!
// // }
// // if raw.truncate != '' {
// // input.truncate = truncate_type_from_string(raw.truncate)!
// // }
// return TextEmbeddingInput{}
// }
// loads converts a JSON string to TextEmbeddingInput
// pub fn loads(text string) !TextEmbeddingInput {
// // First decode the JSON string to the raw struct
// raw := json.decode(TextEmbeddingInputRaw, text) or {
// return error('Failed to decode JSON: ${err}')
// }
// // Then convert the raw struct to the typed struct
// return text_embedding_input_from_raw(raw)
// }
// ModelEmbeddingOutput represents the response from embedding requests
pub struct ModelEmbeddingOutput {
pub mut:
@@ -217,17 +167,74 @@ pub mut:
dimension int
}
// EmbeddingData represents a single embedding result
pub struct EmbeddingData {
// CreateEmbeddingParams represents the parameters for creating embeddings
@[params]
pub struct CreateEmbeddingParams {
pub mut:
embedding []f64
index int
object string
input []string @[required] // Input texts
model JinaModel @[required] // Model name
task string @[required] // Task type
type_ ?EmbeddingType // embedding type
truncate ?TruncateType // truncation type
late_chunking ?bool // Flag to determine if late chunking is applied
}
// Usage represents token usage information
pub struct Usage {
pub mut:
total_tokens int
unit string
// Create embeddings for input texts
pub fn (mut j Jina) create_embeddings(params CreateEmbeddingParams) !ModelEmbeddingOutput {
task := task_type_from_string(params.task)!
mut embedding_input := TextEmbeddingInput{
input: params.input
model: params.model.to_string()
task: task
}
if v := params.type_ {
embedding_input.type_ = v
}
if v := params.truncate {
embedding_input.truncate = v
}
embedding_input.late_chunking = if _ := params.late_chunking { true } else { false }
req := httpconnection.Request{
method: .post
prefix: 'v1/embeddings'
dataformat: .json
data: json.encode(embedding_input)
}
mut httpclient := j.httpclient()!
response := httpclient.post_json_str(req)!
return json.decode(ModelEmbeddingOutput, response)!
}
pub struct HealthResponse {
pub mut:
status string
message string
healthy bool
}
pub fn (mut j Jina) health() !HealthResponse {
req := httpconnection.Request{
method: .get
}
mut httpclient := j.httpclient()!
response := httpclient.send(req)!
if response.code == 200 {
return HealthResponse{
status: response.code.str()
message: '200 Service available'
healthy: true
}
}
return HealthResponse{
status: response.code.str()
message: '${response.code} Service Unavailable'
healthy: false
}
}

View File

@@ -1,104 +0,0 @@
module jina
import json
// BulkEmbeddingJobResponse represents the response from bulk embedding operations
pub struct BulkEmbeddingJobResponse {
pub mut:
job_id string
status string
model string
created_at string
completed_at string
error_message string
}
// DownloadResultResponse represents the response for downloading bulk embedding results
pub struct DownloadResultResponse {
pub mut:
download_url string
expires_at string
}
// MultiVectorUsage represents token usage information for multi-vector embeddings
pub struct MultiVectorUsage {
pub mut:
total_tokens int
}
// MultiVectorEmbeddingData represents a single multi-vector embedding result
pub struct MultiVectorEmbeddingData {
pub mut:
embeddings [][]f64
index int
}
// ColbertModelEmbeddingsOutput represents the response from multi-vector embedding requests
pub struct ColbertModelEmbeddingsOutput {
pub mut:
model string
object string
data []MultiVectorEmbeddingData
usage MultiVectorUsage
}
// HTTPValidationError represents a validation error response
pub struct HTTPValidationError {
pub mut:
detail []ValidationError
}
// ValidationError represents a single validation error
pub struct ValidationError {
pub mut:
loc []string
msg string
type_ string @[json: 'type'] // 'type' is a keyword, so we need to specify the JSON name
}
// Serialize and deserialize functions for the main request/response types
// Serialize TextEmbeddingInput to JSON
pub fn (input TextEmbeddingInput) to_json() string {
return json.encode(input)
}
// Parse JSON to TextEmbeddingInput
pub fn parse_text_embedding_input(json_str string) !TextEmbeddingInput {
return json.decode(TextEmbeddingInput, json_str)
}
// Parse JSON to ModelEmbeddingOutput
pub fn parse_model_embedding_output(json_str string) !ModelEmbeddingOutput {
return json.decode(ModelEmbeddingOutput, json_str)
}
// // Serialize RankAPIInput to JSON
// pub fn (input RankAPIInput) to_json() string {
// return json.encode(input)
// }
// Parse JSON to RankingOutput
pub fn parse_ranking_output(json_str string) !RankingOutput {
return json.decode(RankingOutput, json_str)
}
// Parse JSON to BulkEmbeddingJobResponse
pub fn parse_bulk_embedding_job_response(json_str string) !BulkEmbeddingJobResponse {
return json.decode(BulkEmbeddingJobResponse, json_str)
}
// Parse JSON to DownloadResultResponse
pub fn parse_download_result_response(json_str string) !DownloadResultResponse {
return json.decode(DownloadResultResponse, json_str)
}
// Parse JSON to ColbertModelEmbeddingsOutput
pub fn parse_colbert_model_embeddings_output(json_str string) !ColbertModelEmbeddingsOutput {
return json.decode(ColbertModelEmbeddingsOutput, json_str)
}
// Parse JSON to HTTPValidationError
pub fn parse_http_validation_error(json_str string) !HTTPValidationError {
return json.decode(HTTPValidationError, json_str)
}

View File

@@ -0,0 +1,98 @@
module jina
import json
import freeflowuniverse.herolib.core.httpconnection
// Enum for available Jina multi-vector models
pub enum MultiVectorModel {
jina_colbert_v1_en // jina-colbert-v1-en
}
// Convert the enum to a valid string
pub fn (m MultiVectorModel) to_string() string {
return match m {
.jina_colbert_v1_en { 'jina-colbert-v1-en' }
}
}
// Enum for input types
pub enum MultiVectorInputType {
document // document
query // query
}
// MultiVectorTextDoc represents a text document for a multi-vector request
pub struct MultiVectorTextDoc {
pub mut:
id ?string // Optional: ID of the document
text string @[required] // Text of the document
input_type ?MultiVectorInputType // Optional: Type of the embedding to compute, query or document
}
// MultiVectorRequest represents the JSON request body for the /v1/multi-vector endpoint
struct MultiVectorRequest {
model string // Model name
input []MultiVectorTextDoc // Input documents
embedding_type ?[]string // Optional: Embedding type
dimensions ?int // Optional: Number of dimensions
}
// MultiVectorResponse represents the JSON response body for the /v1/multi-vector endpoint
pub struct MultiVectorResponse {
data []Embedding // List of embeddings
usage Usage // Usage information
model string // Model name
object string // Object type as string
}
// EmbeddingObjType represents the embeddings object in the response
pub struct EmbeddingObjType {
pub mut:
float ?[][]f64 // Optional 2D array of floats for multi-vector embeddings
base64 ?[]string // Optional array of base64 strings
binary ?[]u8 // Optional array of bytes
}
// SEmbeddingType is a sum type to handle different embedding formats
pub type SEmbeddingType = EmbeddingObjType | []f64 | []string | []u8
// Embedding represents an embedding vector
pub struct Embedding {
index int // Index of the document
embeddings SEmbeddingType // Embedding vector as a sum type
object string // Object type as string
}
// MultiVectorParams represents the parameters for a multi-vector request
@[params]
pub struct MultiVectorParams {
pub mut:
model MultiVectorModel = .jina_colbert_v1_en // Model name
input []MultiVectorTextDoc // Input documents
input_type ?MultiVectorInputType // Optional: Type of the embedding to compute, query or document
embedding_type ?[]string // Optional: Embedding type
dimensions ?int // Optional: Number of dimensions
}
// CreateMultiVector creates a multi-vector request and returns the response
pub fn (mut j Jina) create_multi_vector(params MultiVectorParams) !MultiVectorResponse {
request := MultiVectorRequest{
model: params.model.to_string()
input: params.input
embedding_type: params.embedding_type
dimensions: params.dimensions
}
req := httpconnection.Request{
method: .post
prefix: 'v1/multi-vector'
dataformat: .json
data: json.encode(request)
}
mut httpclient := j.httpclient()!
response := httpclient.post_json_str(req)!
println('response: ${response}')
result := json.decode(MultiVectorResponse, response)!
return result
}